Google Scholar citation: https://scholar.google.com/citations?user=IzWTV9sAAAAJ


Patents / Invention disclosures

2. Tianli Feng, Zhenglai Shen, Som S Shrestha, Provisional patent application “Building Air Leakage Detection and Quantification Using Transient Infrared Imaging” 63 542 999 (2023).

1. Som S. Shrestha, Mikael Salonvaara, Emishaw D. Iffa, Niraj Kunwar, Diana Hun, Philip R. Boudreaux, and Tianli Feng, Non-Provisional Utility Patent Application – UTB Ref. No. ID202004771.US.01, Fox Ref. No. 157379.11801 (6321-547), “Solid-State Thermal Switch Panel For Thermal Storage”. (2023)


Book Chapters/ Review Articles:

5. (Article) Z. Cheng, Z. Huang, J. Sun, J. Wang, T. Feng, K. Ohnishi, J. Liang, H. Amano, R. Huang, (Ultra)wide bandgap semiconductor heterostructures for electronics cooling: materials growth, heterogeneous integration, and thermal characterizations, Applied Physics Review.

4. (Article) T. Feng*, H. Zhou, Z. Cheng, L. Larkin, M. Neupane, “A Critical Review of Thermal Boundary Conductance across Wide and Ultrawide Bandgap Semiconductor Interfaces”, ACS Applied Materials & Interfaces, 15, 25, 29655 (2023). [Link] [PDF][Corrections]

3. (Book) T. Feng*, X. Ruan*, Higher-order phonon scattering: advancing the quantum theory of phonon linewidth, thermal conductivity and thermal radiative properties. in Nanoscale Energy Transport 2-1-2–44 (IOP Publishing, 2020). [Link] [PDF]

2. (Article) B. Xu*, T. Feng, Z. Li, W. Zhang, Y. Wu*, “Large-Scale, Solution-Synthesized Nanostructured Composites for Thermoelectric Applications”, Advanced Materials 30, 1801904 (2018). (invited review paper) [Link] [PDF]

1. (Article) T. Feng, X. Ruan*, “Prediction of spectral phonon mean free path and thermal conductivity with applications to thermoelectrics and thermal management: a review”, Journal of Nanomaterials 2014, 206370 (2014). (invited paper) [Link] [PDF]


Peer-Reviewed Journal Articles:

2024

84. R. Zhang, Z. Shen, B. Park, T. Feng, A. Aldykiewicz, A. Desjarlais, D. Hun, S. Shrestha, “Natural Fibers as Promising Core Materials of Vacuum Insulation Panels”, under review

83. S. Zhou, Z. Hua, K. K. Bawane, H. Zhou, T. Feng, Impacts of Point Defects on Shallow Doping in Cubic Boron Arsenide: A First Principles Study, arXiV: 2403.09013

82. M. Hoque, E. Hoglund, B. Zhao, D. Bao, H. Zhou, S. Thakur, E. Osei-Agyemang, K. Hattar, E. Scott, M. Surendran, J. Tomko, J. Gaskins, K. Aryana, S. Makarem, G. Balasubramanian, A. Giri, T. Feng, J. Hachtel, J. Ravichandran, S. Pantelides, P. Hopkins, “Ruddlesden-Popper chalcogenides push the limit of mechanical stiffness and glass-like thermal conductivity in crystals”, arXiv preprint arXiv:2312.02534

81. K.Z. Adnan, M. Neupane, T. Feng*, Thermal boundary conductance of metal-diamond interfaces predicted by machine learning interatomic potentials, arXiv preprint arXiv:2404.15465

80. Z. Cheng, Z. Huang, J. Sun, J. Wang, T. Feng, K. Ohnishi, J. Liang, H. Amano, R. Huang, (Ultra)wide bandgap semiconductor heterostructures for electronics cooling: materials growth, heterogeneous integration, and thermal characterizations, Appl. Phys. Rev. (2024)

79. K.Z. Adnan, T. Feng*, Thermal boundary conductance and thermal conductivity strongly depend on nearby environment, Phys. Rev. B,  109, 245302 (2024). [PDF]

78. J. Tiwari, S. Shrestha, T. Feng*, “Computational design of isotropic and anisotropic ultralow thermal conductivity foams”, J. Build. Eng., 92, 109717 (2024). [Link] [PDF]

77. T. Feng*, Z. Shen, S. Shrestha, D. Hun, “A novel transient infrared imaging method for non-intrusive, low-cost, fast, and accurate air leakage detection in building envelopes”, J. Build. Eng., 91, 109699 (2024). [Link] [PDF]

76. H. Zhou, J. Tiwari, T. Feng*, “Understanding the flat thermal conductivity of La2Zr2O7 at ultra-high temperatures”, Phys. Rev. Mater., 8, 034804 (2024). [Link] [PDF]

75. J. Tiwari, T. Feng*, “Accurate prediction of thermal conductivity of Al2O3 at ultrahigh temperatures”, Phys. Rev. B, 109, 075201 (2024). [Link] [PDF]

2023

74. H. Zhou, S. Zhou, Z. Hua, K. Bawane, T. Feng*, “Extreme sensitivity of higher-order interatomic force constants and thermal conductivity to the energy surface roughness of exchange-correlation functionals”, Appl. Phys. Lett. 123, 192201 (2023). [Link] [PDF] (This paper was selected as a Featured Article by Applied Physics Letters. See our news)

73. T. Feng*, H. Zhou, Z. Cheng, L. Larkin, M. Neupane, “A Critical Review of Thermal Boundary Conductance across Wide and Ultrawide Bandgap Semiconductor Interfaces”, ACS Appl. Mater. Interfaces15, 25, 29655 (2023).  [Link] [PDF][Corrections]

72. Y. Lou, X. Li, Z. Shi, H. Zhou, T. Feng, B. Xu*, “General Syntheses of High-Performance Thermoelectric Nanostructured Solids without Post-Synthetic Ligand Stripping”, Nano Lett. 23, 11, 5317 (2023) [Link] [PDF] [Correction]

71. J. Tiwari, T. Feng*, “Intrinsic thermal conductivity of ZrC from low to ultra-high temperatures: A critical revisit”, Phys. Rev. Mater., 7, 065001 (2023). [Link] [PDF+SI]

70. H. Zhou, T. Feng*, “Theoretical upper limits of the thermal conductivity of Si3N4”, Appl. Phys. Lett. 122, 182203 (2023). [Link] [PDF]

69. Y. Zhang, W. M. Postiglione, R. Xie, C. Zhang, H. Zhou, V. Chaturvedi, K. Heltemes, H. Zhou, T. Feng, C. Leighton, and X. Wang*, “Wide-range continuous tuning of the thermal conductivity of La0.5Sr0.5CoO3-d films via room-temperature ion-gel gating”, Nat. Comm. 14, 2626 (2023). [Link] [PDF]

68. Z. Shen, S Shrestha, D. Howard, T. Feng, D. Hun, B. She, Machine learning–assisted prediction of heat fluxes through thermally anisotropic building envelopes, Building and Environment, 234, 110157 (2023). [Link] [PDF]

67. S. S. Shrestha, J. Tiwari, A. Rai, D. E. Hun, D. Howard, A. O. Desjarlais, M. Francoeur, T. Feng*, Solid and Gas Thermal Conductivity Models Improvement and Validation in Various Porous Insulation Materials, Int. J. Therm. Sci. 187, 108164, (2023). [Link] [PDF]

2022

66. Z. Cheng, J. Liang, K. Kawamura, H. Zhou, H. Asamura, H. Uratani, J. Tiwari, S. Graham, Y. Ohno, Y. Nagai, T. Feng, N. Shigekawa*, D. G. Cahill*, High Thermal Conductivity in Wafer-Scale Cubic Silicon Carbide Crystals, Nat. Comm. 13, 7201 (2022). [Link] [PDF_w_SI]

65. X. Li, Y. Lou, K. Jin, L. Fu, P. Xu, Z. Shi, T. Feng, B. Xu, Realizing zT > 2 in environment-friendly monoclinic Cu2S – tetragonal Cu1.96S nano phase junctions, Angew. Chem. Int. Ed., 10.1002/anie.202212885, 2022. [Link][PDF_w_SI]

64. R. Xie, J. Tiwari, T. Feng*, Impacts of various interfacial nanostructures on spectral phonon thermal boundary conductance, J. Appl. Phys. 132, 115108 (2022). [Link] [PDF]

63. W. Zhang, Y. Lou, H. Dong, F. Wu, J. Tiwari, Z. Shi, T. Feng, S. T. Pantelides, B. Xu*, Phase-engineered high-entropy metastable FCC Cu2−yAgy(InxSn1−x)Se2S nanomaterials with high thermoelectric performance, Chem. Sci. 13, 10461 (2022). [Link] [PDF_w_SI]

62. K. Jin, J. Tiwari, T. Feng*, Y. Lou*, B. Xu*, Realizing high thermoelectric performance in eco-friendly Bi2S3 with nanopores and Cl-doping through shape-controlled nano precursors, Nano Energy 100, 107478, 2022. [Link] [PDF_w_SI]

61. X. Yang, J. Tiwari, T. Feng*, Reduced anharmonic phonon scattering cross-section slows the decrease of thermal conductivity with temperature, Materials Today Physics 24, 100689 (2022). [Link] [PDF] [SI]

60. X. Yang, T. Feng, J. Li, X. Ruan*, Evidence of fifth- and higher-order phonon scattering entropy of zone-center optical phonons, Phys. Rev. B 105, 115205 (2022). [Link] [PDF_w_SI]

59. Z. Zhu, J. Tiwari, T. Feng, Z. Shi, Y. Lou*, B. Xu*, “High thermoelectric properties with low thermal conductivity due to the porous structure induced by the dendritic branching in n-type PbS”, Nano Research 15, 4739 (2022). [Link] [PDF_w_SI]

58. Z. Han, X. Yang, S. E. Sullivan, T. Feng, L. Shi, W. Li, X. Ruan, “Raman linewidth contributions from four-phonon and electron-phonon interactions in graphene”, Phys. Rev. Lett. 128, 045901 (2022). [Link] [PDF_w_SI]

57. Q. Guo, T. Feng, M.J. Lance, K.A. Unocic, S.T. Pantelides, E. Lara-Curzio*, “Evolution of the structure and chemical composition of the interface between multi-component silicate glasses and yttria-stabilized zirconia after 40,000-hour exposure in air at 800°C”, J. Eur. Ceram. Soc. 42, 1576 (2022) [Link] [PDF]

56. Y. Zhang, M. Eslamisaray, T. Feng, U. Kortshagen, X. Wang*, “Observation of Suppressed Diffuson and Propagon Thermal Conductivity of Hydrogenated Amorphous Silicon Films”, Nanoscale Advances 4, 87 (2022) [Link] [PDF]

55. Z. Han, X. Yang, W. Li, T. Feng, X. Ruan*, “FourPhonon: An extension module to ShengBTE for computing four-phonon scattering rates and thermal conductivity”, Comp. Phys. Comm., 270, 108179 (2022). [Link] [PDF]

2021

54. J. Xu, Y. Hu, X. Ruan, X. Wang, T. Feng*, H. Bao*, “Nonequilibrium phonon transport induced by finite sizes: the effect of phonon-phonon coupling”, Phys. Rev. B, 104, 104310 (2021). [Link] [PDF]

53. A. Kundu, X. Yang, J. Ma, T. Feng, J. Carrete, X. Ruan, G. K. H. Madsen, and W. Li, “Ultrahigh Thermal Conductivity of θ-Phase Tantalum Nitride”, Phys. Rev. Lett. 126, 115901 (2021). [Link] [PDF_w_SI]

52. A. Rai, T. Feng, D. Howard, D. Hun, M. Zhang, H. Zhou, S. S. Shrestha, “Conduction Heat Transfer through Solid in Porous Materials: A Comparative Study by Finite-Element Simulations and Effective Medium Approximations”, Comput. Therm. Sci. 13, 19 (2021) [Link] [PDF].

51. Q. Zheng#, T. Feng#, J. A. Hachtel,# R. Ishikawa, J. C. Idrobo, J. Yan, N. Shibata, Y. Ikuhara, B. C. Sales, S. T. Pantelides, M. Chi, “Direct Visualization of Anionic Electrons in an Electride Reveals Inhomogeneities”, Science Advances, Vol. 7, no. 15, eabe6819 [Link] [PDF_w_SI](#contributed equally)

50. P. R. Chowdhury, J. Shi, T. Feng, X. Ruan, “Prediction of Bi2Te3/Sb2Te3 interfacial conductance and superlattice thermal conductivity using molecular dynamics simulations”, ACS Appl. Mater. & Interfaces, 10.1021/acsami.0c17851 (2021). [Link] [PDF]

49. T. Feng*#, Y. Wang#, A. Herklotz, M. F. Chisholm, T. Z. Ward, P. C. Snijders*, and S. T. Pantelides*, “Determination of rutile transition metal oxide (110) surface terminations by scanning-tunneling-microscopy contrast reversal”, Phys. Rev. B 103, 035409 (2021). (# these authors contributed equally) [Link] [PDF_w_SI]

48. T. Feng*, A. Rai, D. Hun, S. S Shrestha*, “Molecular dynamics simulations of energy accommodation between gases and polymers for ultra-low thermal conductivity insulation”, Int. J. Heat Mass Tran. 164,120459 (2021). [Link] [PDF]

2020

47. T. Feng*, J. He, A. Rai, D. Hun, J. Liu, S. S Shrestha*, “Size effects in the thermal conductivity of amorphous polymers”, Phys. Rev. Applied 14, 044023 (2020). [Link] [PDF_w_SI]

46. S. Neumayer, L. Tao, A. O’Hara, J. Brehm, M. Si, P.-Y. Liao, T. Feng, S. V Kalinin, D Y. Peide, S. T Pantelides, P. Maksymovych, N. Balke*, “Alignment of Polarization against an Electric Field in van der Waals Ferroelectrics”, Phys. Rev. Applied 13, 064063 (2020). [Link]

45. A. Dziaugys , K. Kelley , J. A. Brehm, L. Tao, A. Puretzky, T. Feng, A. O’Hara, S. Neumayer , M. Chyasnavichyus , E. A. Eliseev, J. Banys, Y. Vysochanskii, F. Ye, B. Chakoumakos, M. A. McGuire, S. V. Kalinin, G. Panchapakesan, N. Balke, S. T. Pantelides, A. N. Morozovska, P. Maksymovych*, “Piezoelectric domain walls in van der Waals antiferroelectric CuInP2Se6”, Nat. Commun. 11, Article number: 3623 (2020). [Link] [PDF]

44. T. Feng*, A. O’Hara, S. T. Pantelides*, “Quantum Prediction of Ultra-Low Thermal Conductivity in Lithium Intercalation Materials”, Nano Energy, 75, 104916 (2020). [Link] [PDF] [SI]

43. Y. Luo, X. Yang, T. Feng, J. Wang, X. Ruan*, “Vibrational hierarchy leads to dual-phonon transport in low thermal conductivity crystals”, Nat. Commun. 11, 2554 (2020). [Link] [PDF]

42. Y. Hu#, T. Feng#, X. Gu, Z. Fan, X. Wang, M. Lundstrom, S. S. Shrestha, H. Bao*, “Unification of nonequilibrium molecular dynamics and the mode-resolved phonon Boltzmann equation for thermal transport simulations”, Phys. Rev. B, 101, 155308 (2020). [Link] [PDF] (# these authors contributed equally)

41. X. Yang#, T. Feng#, J. S. Kang, Y. Hu, J. Li, X. Ruan*, Observation of strong higher-order lattice anharmonicity in Raman and infrared response, Phys. Rev. B 101, 161202(R) (2020). [Link] [PDF_w_SI] (# these authors contributed equally)

(Selected as the Editors’ Suggestions of Physical Review B: Reported by news media. See our News)

40. Z. Tong, X. Yang, T. Feng, H. Bao, X. Ruan*, First-principles predictions of temperature-dependent infrared dielectric function of polar materials by including four-phonon scattering and phonon frequency shift, Phys. Rev. B 101, 125416 (2020). [Link] [PDF]

39. P. R. Chowdhury, C. Reynolds, A. Garrett, T. Feng, S. P. Adiga,* X. Ruan,* Machine learning maximized Anderson localization of phonons in aperiodic superlattices, Nano Energy 69, 104428 (2020). [Link] [PDF]

38. T. Feng, X. Wu, X. Yang, P. Wang, L. Zhang, X. Du, X. Wang*, S. T. Pantelides*, “Thermal conductivity of HfTe5: a critical revisit”, Adv. Funct. Mater. 30, 1907286 (2020). [Link] [PDF]

37. Q. Wang, Z. Zhao, Z. Zhang, T. Feng, R. Zhong, H. Xu, S. T. Pantelides, M. Gu*, “Sub-3 nm Intermetallic ordered Pt3In Clusters for Oxygen Reduction Reaction”, Adv. Sci., 7, 1901279 (2020). [Link] [PDF]

2019

36. X. Yang, T. Feng, J. Li, X. Ruan*, “Stronger role of four-phonon scattering than three-phonon scattering in thermal conductivity of III-V semiconductors at room temperature”, Phys. Rev. B 100, 245203, (2019). [Link] [PDF]

35. M. Dargusch, X. Shi, X. Tran, T. Feng, F. Somidin, X. Tan, W. Liu, K. Jack, J. Venezuela, H. Maeno, T. Toriyama, S. Matsumura, S. T. Pantelides, Z. Chen*, “In-Situ Observation of the Continuous Phase Transition in Determining the High Thermoelectric Performance of Polycrystalline Sn0.98Se'”, J. Phys. Chem. Lett., 10, 6512-6517 (2019). [Link] [PDF]

34. T. Feng, Y. Zhong, J. Shi, X. Ruan*, “Unexpected high inelastic phonon transport across solid-solid interface: Modal nonequilibrium molecular dynamics simulations and Landauer analysis”, Phys. Rev. B, 99, 045301 (2019). [Link] [PDF]

33. Q.-Y. Li*, T. Feng, W. Okita, Y. Komori, H. Suzuki, T. Kato*, T. Kaneko, T. Ikuta, X. Ruan*, K. Takahashi, “Enhanced Thermoelectric Performance of As-Grown Suspended Graphene Nanoribbons”, ACS Nano 13, 8, 9182 (2019). [Link] [PDF]

32. A. Oyedele#, S. Yang#, T. Feng#, A. V. Haglund, Y. Gu, A. A. Puretzky, D. Briggs, C. M. Rouleau, M. F. Chisholm, R. R. Unocic, D. Mandrus, H. M. Meyer, S. T. Pantelides, D. B. Geohegan, K. Xiao*, “Defect-mediated phase transformation in anisotropic 2D PdSe2 crystals for seamless electrical contacts”, J. Am. Chem. Soc., 141, 22, 8928-8936 (2019). [Link] [PDF+SI] (# these authors contributed equally)

31. Z. Cheng, T. Bai, J. Shi, T. Feng, Y. Wang, C. Li, K. D. Hobart*, T. I. Feygelson, M. J. Tadjer, B. B. Pate, B. M. Foley, L. Yates, S. Pantelides, B. A. Cola, M. Goorsky, S. Graham*, “Tunable Thermal Energy Transport across Diamond Membranes and Diamond-Si Interfaces by Nanoscale Graphoepitaxy”, ACS Appl. Mater. & Interfaces, 11, 20, 18517-18527 (2019). [Link] [PDF+SI]

30. P. R. Chowdhury, T. Feng, Xiulin Ruan*, “Development of interatomic potentials for the complex binary compound Sb2Te3 and the prediction of thermal conductivity”, Phys. Rev. B 99, 155202 (2019). [Link] [PDF]

29. M. Jin*, X. Shi, T. Feng, W. Liu, H. Feng, S. T. Pantelides, J. Jiang, Y. Chen, Y. Du, J. Zou*, Z. Chen*, “Super Large Sn1-xSe Single Crystals with Excellent Thermoelectric Performance”, ACS Appl. Mater. & Interfaces 11 (8), pp 8051–8059 (2019). [Link] [PDF+SI]

28. M. Hong, Y. Wang, T. Feng, Q. Sun, S. Xu, S. Matsumura, S. T. Pantelides, J. Zou*, Z. Chen*, “Strong Phonon-Phonon Interactions Securing Extraordinary Thermoelectric Ge1-xSbxTe with Zn-Doping Induced Band Alignment”, J. Am. Chem. Soc. 141 (4), 1742–1748 (2019). [Link] [PDF+SI]

27. Z. Cheng, A. Weidenbach, T. Feng, M. B. Tellekamp, S. Howard, M. J. Wahila, B. Zivasatienraj, B. Foley, S. Pantelides, L. F.J. Piper, W. Doolittle, S. Graham*, “Diffuson-driven Ultralow Thermal Conductivity in Amorphous Nb2O5 Thin Films”, Phys. Rev. Materials 3, 025002 (2019). [Link] [PDF+SI]

26. X. Shi, A. Wu, T. Feng, K. Zheng, W. Liu, M. Hong, Q. Sun, S. T. Pantelides, Z. Chen*, J. Zou*, “High thermoelectric performance in p-type polycrystalline Cd-doped SnSe achieved by a combination of cation vacancies and localized lattice engineering”, Adv. Energy Mater. 9, 1803242 (2019). [Link] [PDF+SI]

2018

25. B. Xu#, T. Feng#, Z. Li, L. Zhou, S. T. Pantelides, Y. Wu*, “Creating Zipper-like van der Waals Gap Discontinuity in Low-Temperature-Processed Nanostructured PbBi2nTe1+3n for Enhanced Phonon Scattering and Improved Thermoelectric Performance”, Angew. Chem. Int. Ed. 57, 10938 (2018). [Link] [PDF+SI] (# these authors contributed equally)

24. B. Xu*, T. Feng, Z. Li, W. Zhang, Y. Wu*, “Large-Scale, Solution-Synthesized Nanostructured Composites for Thermoelectric Applications”, Adv. Mater., 30, 1801904 (2018). [Link] [PDF]

23. J. Zhu#, T. Feng#, S. Mills, P. Wang, X. Wu, L. Zhang, S. T. Pantelides, X. Du, X. Wang*, “Record-Low and Anisotropic Thermal Conductivity of Quasi-1D Bulk ZrTe5 Single Crystal”, ACS Appl. Mater. & Interfaces 10, 40740–40747 (2018). [Link] [PDF+SI] (# these authors contributed equally)

22. E. Shi#, T. Feng#, J. Bahk, Y. Pan, W. Zheng, Z. Li, G. J. Snyder, S. T. Pantelides, Y. Wu*, “Experimental and Theoretical Study on Well-Tunable Metal Oxide Doping Towards HighPerformance Thermoelectrics”, ES Energy & Environment 2, 43-49 (2018). [Link] [PDF+SI] (# these authors contributed equally)

(Selected as the cover page of ES Energy & Environment Vol 2: See our News)

21. B. Xu, T. Feng, Z. Li, S. Pantelides, Y. Wu*, “Constructing Highly Porous Thermoelectric Monoliths with High Performance and Improved Portability from Solution-Synthesized Shape-Controlled Nanocrystals”, Nano Lett. 18, 4034-4039 (2018). [Link] [PDF+SI]

20. J. Idrobo*, A. Lupini*, T. Feng, R. Unocic, F. Walden, D. Gardiner, T. Lovejoy, N. Dellby, S. Pantelides, O. Krivanek, “Temperature Measurement by a Nanoscale Electron Probe using Energy Gain and Loss Spectroscopy”, Phys. Rev. Lett. 120, 095901 (2018). [Link] [PDF+SI]

(Highlighted by several academic news: See our News)

19. T. Feng*, X. Yang, X. Ruan*, “Phonon anharmonic frequency shift induced by four-phonon scattering calculated from first principles”, J. Appl. Phys. 124, 145101 (2018). [Link] [PDF]

18. B. Xu#, T. Feng#, M. T. Agne, Q. Tan, Z. Li, K. Imasato, L. Zhou, J. Bahk, X. Ruan, G. J. Snyder, Y. Wu*, “Manipulating Band Structure through Reconstruction of Binary Metal Sulfide for High‐Performance Thermoelectrics in Solution‐Synthesized Nanostructured Bi13S18I2“, Angew. Chem. Int. Ed. 130, 2437–2442 (2018). [Link] [PDF+SI] (# these authors contributed equally)

(Marked as Very Important Paper by Angewandte Chemie.)

17. T. Feng, X. Ruan*, “Four-phonon scattering reduces intrinsic thermal conductivity of graphene and the contributions from flexural phonons”, Phys. Rev. B 97, 045202 (2018). [Link] [PDF]

2017

16. X. Wu, J. Walter, T. Feng, J. Zhu, H. Zheng, J. F. Mitchell, N. Biškup, M. Varela, X. Ruan, C. Leighton, X. Wang*, “Glass-Like Through-Plane Thermal Conductivity Induced by Oxygen Vacancies in Nanoscale Epitaxial La0.5Sr0.5CoO3−δ“, Adv. Funct. Mater. 27, 1704233 (2017). [Link] [PDF+SI]

(Selected as the front cover of Advanced Functional Materials, Vol 27, Iss 47, 2017.)

15. T. Feng, L. Lindsay, X. Ruan*, “Four-phonon scattering significantly reduces intrinsic thermal conductivity of solids”, Phys. Rev. B: Rapid Commun. 96 (16), 161201 (2017). [Link] [PDF+SI]

(Highlighted by several academic news, Intensively cited by three Science papers: see our News)

14. T. Feng, W. Yao, Z. Wang, J. Shi, C. Li, B. Cao, and X. Ruan*, “Spectral analysis of nonequilibrium molecular dynamics: spectral phonon temperature and local nonequilibrium in thin films and across interfaces”, Phys. Rev. B 95, 195202 (2017). [Link] [PDF]

13. J. Kaiser*, T. Feng, J. Maassen, X. Wang, X. Ruan, M. Lundstrom, “Thermal Transport at the Nanoscale: A Fourier’s Law vs. Phonon Boltzmann Equation Study”, J. Appl. Phys. 121, 044302 (2017). [Link] [PDF] [SI]

12. B. Xu, T. Feng, M. T Agne, L. Zhou, X. Ruan, G J. Snyder, Y. Wu*, “Highly Porous Thermoelectric Nanocomposites with Low Thermal Conductivity and High Figure of Merit from Large‐Scale Solution‐Synthesized Bi2Te2.5Se0.5 Hollow Nanostructures”, Angew. Chem. Int. Ed. 129, 3600-3605 (2017). [Link] [PDF+SI]

(Marked as Very Important Paper by Angewandte Chemie. Highlighted by Nature Review Materials “Thermoelectric materials: The power of pores.)

11. B. Xu, M. Agne, T. Feng, T. C. Chasapis, X. Ruan, Y. Zhou, H. Zheng, J. Bahk*, M. G.Kanatzidis, J. G. Snyder*, Y. Wu*, “Nanocomposites from Solution‐Synthesized PbTe‐BiSbTe Nanoheterostructure with Unity Figure of Merit at Low‐Medium Temperatures (500–600 K)”, Adv. Mater. 29, 1605140 (2017). [Link] [PDF+SI]

(Selected as the inside front cover of Advanced Materials, Vol 29, Iss 10, 2017.)

2016

10. T. Feng, X. Ruan*, “Ultra-low thermal conductivity in graphene nanomesh”, Carbon 101, 107-113 (2016). [Link] [PDF]

9. T. Feng, X. Ruan*, “Quantum mechanical prediction of four-phonon scattering rates and reduced thermal conductivity of solids”, Phys. Rev. B 93, 045202 (2016). [Link] [PDF]

8. H. Fang, J. Bahk, T. Feng, Z. Cheng, A. Mohammed, X. Wang, X. Ruan, A. Shakouri, Y. Wu*, “Thermoelectric properties of solution synthesized n-type Bi2Te3 nanocomposites modulated by Se: An experimental and theoretical study”, Nano Research 9, 117-127 (2016). [Link] [PDF+SI]

2015

7. T. Feng, B. Qiu, X. Ruan*, “Coupling between phonon-phonon and phonon-impurity scattering: A critical revisit of the spectral Matthiessen’s rule”, Phys. Rev. B 92, 235206 (2015). [Link] [PDF]

6. T. Feng, X. Ruan*, Z. Ye, B. Cao*, “Spectral phonon mean free path and thermal conductivity accumulation in defected graphene: The effects of defect type and concentration”, Phys. Rev. B 91, 224301 (2015). [Link] [PDF]

5. Z. Ye, B. Cao*, W. Yao, T. Feng, X. Ruan*, “Spectral phonon thermal properties in graphene nanoribbons”, Carbon 93, 915-923 (2015). [Link] [PDF]

4. T. Feng, B. Qiu, X. Ruan*, “Anharmonicity and necessity of phonon eigenvectors in the phonon normal mode analysis”, J. Appl. Phys. 117, 195102 (2015). [Link] [PDF]

3. Z. Wang, T. Feng, X. Ruan*, “Thermal conductivity and spectral phonon properties of freestanding and supported silicene”, J. Appl. Phys. 117, 084317 (2015). [Link] [PDF]

2014

2. T. Feng, X. Ruan*, “Prediction of spectral phonon mean free path and thermal conductivity with applications to thermoelectrics and thermal management: a review”, J. Nanomater. 2014, 206370 (2014). [Link] [PDF]

2013

1. H. Fang, T. Feng, H. Yang, X. Ruan, and Y. Wu*, “Synthesis and thermoelectric properties of compositional-modulated lead telluride–bismuth telluride nanowire heterostructures”, Nano Lett. 13, 2058 (2013). [Link] [PDF]


Peer-Reviewed Conference Papers:

2. Z. Shen, S. Shrestha, D. Howard, T. Feng, B. She, D. Hun, “A Machine Learning Assisted Framework to Control Thermally Anisotropic Building Envelopes in Residential Buildings”, 2022 Buildings XV Conference, 2022.

1. S. Shrestha, A. Rai, T. Feng, M. Zhang, D. Hun, K. Biswas, A. Desjarlais, “Review of Models to Evaluate and Guide the Development of Low–Thermal-Conductivity Materials.” ASHRAE Topical Conference Proceedings. American Society of Heating, Refrigeration and Air Conditioning Engineers, Inc., 2019.