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A B S T R A C T   

Thermally anisotropic building envelope (TABE) is a novel active building envelope that can save energy use to 
maintain thermal comfort in buildings by redirecting heat and coolness from building envelopes to thermal 
loops. Finite element models (FEMs) can be used to compute the heat fluxes through TABEs, but the high 
computational cost of finite element simulations has prevented parametric studies and design optimizations. This 
paper proposes a domain knowledge–informed, finite element–based machine learning framework to reduce the 
computation cost for the energy management of buildings installed with TABE that uses a ground thermal loop. 
First, the training heat flux data set was generated by FEM simulations with different thermal loop schedules. 
Then, both shallow learning models (i.e., multivariate linear regression and eXtreme Gradient Boost, or XGBoost) 
and a deep learning model (i.e., deep neural network, or DNN) were trained to predict the heat fluxes. Domain 
knowledge was used for data preprocessing and feature selection. Finally, the suitability of the selected machine 
learning model was tested under different thermal loop schedules. The case study results showed that: (1) 
XGBoost can be as accurate as DNN (coefficient of determination equal to 0.81) with much less training time; (2) 
the annual energy cost savings for different thermal loop schedules obtained by the XGBoost-predicted and FEM- 
calculated heat fluxes are consistent, having a difference of only 4%; and (3) XGBoost can reduce the compu-
tation time for the annual energy analysis of the case study building with a given thermal loop schedule from 
around 12 h by using FEM to less than 1 min.   

1. Introduction 

1.1. Background 

Buildings accounted for 30% of global energy use and almost 28% of 
total energy-related CO2 emissions in 2019 [1]. Heating and cooling 
building spaces use most of this energy, accounting for approximately 
42% of energy use in US residential buildings [2] and approximately 
36% of energy use in US commercial buildings [3]. Building envelopes 
are one of the most important components that separate the indoor 
environment from the outdoor environment and provide residents with 
their desired thermal comfort. The building envelope includes the 

opaque envelope, such as the exterior walls and roofs, and the trans-
parent envelope, such as the windows. An estimated 28% of building 
energy use was attributed to the opaque building envelope [4]. There-
fore, thermal management of the opaque building envelope is of para-
mount importance in reducing energy usage. 

Both passive and active building envelopes have been explored in 
previous research to reduce unwanted heat flows passing through the 
envelopes. For passive building envelopes, increasing thermal resistance 
(R-value) and thermal mass are usually adopted [5,6]. The R-value of 
walls is important because it is inversely proportional to the heat flow 
passing through the walls. Recently, researchers have extensively stud-
ied increasing the R-value by adopting high-performance insulation 
materials, such as vacuum insulation panels and aerogels [7–9]. 
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However, high cost and durability issues prevent their wide adoption in 
building envelopes [8–11]. Alternatively, increasing the thermal mass of 
building envelopes has also shown the potential to reduce heating and 
cooling loads and to improve indoor thermal comfort [12]. A viable way 
to increase the thermal mass is to incorporate phase change materials 
into the building envelope [13,14]. However, there is a lack of 
large-scale applications to show its feasibility. 

Active building envelopes can be classified into four categories: air- 
based, water-based, solid-based, and kinetic [15]. Researchers have 
studied the concepts of the active air permeable wall system [16], active 
pipe-embedded wall system [17,18], solid-based active photo-
voltaic–thermoelectric wall system [19,20], and dynamic insulation 
system [21]. Compared with passive building envelopes, active building 
envelopes have an advantage owing mainly to their adaptive and 
tunable (controllable) attributes. Recently, researchers at the US 
Department of Energy’s (DOE’s) Oak Ridge National Laboratory devel-
oped a water-based active building envelope, namely the Thermally 
Anisotropic Building Envelope (TABE) [22–24] to improve thermal man-
agement in building envelopes. Fig. 1 shows the schematic of TABE 
connected to a ground thermal loop managed by a thermal loop 
schedule. TABE is constructed by alternating layers of low thermal 

conductive insulation boards and high thermal conductive thin metal 
sheets such as aluminum. Thermal anisotropy is formed through thin 
metal sheets to allow heat transfer in a preferential direction. Tubes, 
such as Cu tubes, are built in the TABE and connected to the thin metal 
sheets to harvest and use low-grade thermal energy, such as ground 
source energy (e.g., the ground temperature at a specific depth). Interior 
and exterior thermal loops are built in, where the interior loop is close to 
the indoor wall surface and the exterior loop is close to the outdoor wall 
surface. Thermal loops are used to collect energy from ground energy 
source and then supply the energy (heating and cooling energy) to 
TABE. According to the functionalities of the thermal loops, they are 
classified as Ground thermal Loop (GL), Interior thermal Loop (IL), and 
Exterior thermal Loop (EL). The GL is used to collect energy from 
ground, which may include ground heat exchangers and ground tubes. 
In this study, we used an idealized GL connected to TABE. The idealized 
GL: (1) does not consider other systems such as the ground source heat 
pump; (2) ignores heat gain and loss in the loop; and (3) assumes supply 
water temperature to be the same as the ground temperature at 6.1 m 
(20 feet) depth. The IL or EL is used to describe the thermal process of 
supplying the collected energy to the interior tube or exterior tube of 
TABE for heat exchange. The IL and EL of TABE are managed by a 

List of abbreviations 

Abbreviation Definition 
Adam Adaptive moment estimation 
ANN Artificial Neural Network 
CS Cooling season Schedule 
DNN Deep Neural Network 
DOE The US Department of Energy 
EL Exterior thermal Loop 
FEM Finite Element Model 
GPM Gallons Per Minute 
GL Ground thermal Loop 
HS Heating season Schedule 
HVAC Heating Ventilation and Air Conditioning 

IL Interior thermal Loop 
MAE Mean Absolute Error 
ML Machine Learning 
MLR Multivariate Linear Regression 
MSE Mean Squared Error 
relu rectified linear unit 
RMSE Root Mean Squared Error 
RMSProp Root Mean Squared Propagation 
SGD Stochastic Gradient Descent 
TABE Thermally Anisotropic Building Envelope 
TS Transition season Schedule 
TOD Time-Of-Day 
XGBoost eXtreme Gradient Boost  

Fig. 1. Schematic of TABE with a ground thermal loop managed by a thermal loop schedule.  
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thermal loop schedule to achieve energy savings, where the thermal 
loop schedule can be constant or varied seasonally in a heating or 
cooling day. To avoid the potential freezing issue in cold climates, 
water-antifreeze solutions, such as propylene glycol at 25% weight 
concentration can be used as the heat transfer fluid in the EL. Laboratory 
and field evaluations were conducted [22,25], and the results showed 
that TABE was able to reduce more than 80% of the cooling load and 
60% of the heating load compared with a baseline wall when circulating 
cold and hot water in the IL. Additionally, the Finite Element Model 
(FEM) of TABE was calibrated using the field evaluation data [25]. 

One way to evaluate the heat flow passing through the TABE is to use 
the physics-based model (i.e., FEM). It is comprehensive and uses 
physical principles to estimate the thermal dynamics and the thermal 
behavior of individual building components or the entire building [26]. 
The physics-based model involves detailed physics, which is usually 
called the white-box model and requires high expertise to develop the 
model and a long computation time. A given thermal loop schedule 
needs approximately 3 h to calculate the annual heat flux of a TABE 
wall. Such a long simulation time makes the determination of a suitable 
thermal loop schedule very challenging, especially when an optimiza-
tion algorithm is needed in the process such as model predictive control. 
Therefore, there is a need to develop a Machine Learning (ML) -based 
framework to speed up the prediction of heat flux through TABE 
building envelopes under different operating conditions and thermal 
loop schedules for efficient building energy management. 

1.2. Review of ML method in building energy research 

ML is one of the most used data-driven methods that combines 
computer science and statistics, and it serves as the core of artificial 
intelligence and data science [27]. Unlike the physics-based model, the 
ML model makes a prediction without knowing the detailed physics. The 
ML model is also known as the black-box model [28]. ML has been widely 
used in building energy–related studies to predict a building’s thermal 
load [29–31], energy consumption [32–34], wall heat flux [35], heat 
loss coefficient [36], and other related factors. Based on the model’s 
structure, ML models can be categorized into shallow learning models 
and deep learning models. Shallow learning models learn from data 
described by predefined features and usually consist of very few layers of 
composition. Examples include Multivariate Linear Regression (MLR), 
support vector machine, decision tree, random forest, eXtreme Gradient 
Boost (XGBoost), and Artificial Neural Network (ANN) with one hidden 
layer. ANN has a strong fitting capability owing to its thousands of 
neurons and nonlinear activation functions, which may represent a wide 
variety of functions when given appropriate weights and biases [37]. 

Deep learning models usually have a multilayer structure, such as 
Deep Neural Network (DNN), or multilayer perceptron, which is an ANN 
model with multiple hidden layers. DNN has been proven to be adequate 
in approximating and solving complex problems with nonlinearities 
[38]. DNN has been used in building energy–related works to infer 
trends and generate predictions from the training data. For example, 
Magalhaes et al. [39] used DNN to characterize the relationship between 
heating energy use and heating energy demand under typical indoor and 
outdoor conditions in residential buildings. They concluded that DNN 
can be applied to estimate the heating energy use both of an individual 
building and at a building stock level. Ahmad et al. [40] compared the 
performance of a random forest and DNN to predict building energy 
consumption. Their results indicated that DNN performed marginally 
better than the random forest in predicting hourly electricity con-
sumption. Additionally, DNN has also been applied to predict weather 
data [41] and solar radiation [42]. 

1.3. Research objectives 

The first objective of this study is to address the need for an ML-based 
framework to predict the heat flux of TABE that uses a GL under different 

thermal loop schedules to reduce the computation time. To this end, an 
FEM of TABE that uses a GL was established in COMSOL to calculate the 
hourly heat flux subject to indoor and outdoor boundary conditions that 
were given different thermal loop schedules and ground temperatures. 
The heat flux data set was then used to train the MLR, XGBoost, and DNN 
models. Different performance metrics were used for the model 
selection. 

The second objective is to apply the selected trained model in a 
thermal loop schedule selection by comparing the energy performance 
of a US Department of Energy (DOE) prototype single-family residential 
building. The thermal loop schedules are generated by a Time-Of-Day 
(TOD)–based rule, which can be considered a rule-based control. The 
selected thermal loop schedule was compared with the baseline, whose 
heat flux was computed by the FEM, to test the suitability of the selected 
ML model. 

2. Methodology 

To predict the heat flux of the TABE that uses a GL for building en-
ergy management, this study proposes a domain knowledge–informed, 
finite element–based, data-driven framework, as shown in Fig. 2. This 
study consists of three main parts: (1) finite element modeling and 
training data set preparation, (2) domain knowledge–informed heat flux 
prediction, and (3) predictor-guided thermal loop schedule selection. 
For the finite element modeling and training data set preparation, FEM 
of the TABE that uses a ground thermal loop was developed for given 
climate conditions, ground temperatures, and thermal loop schedules. A 
heat flux database was established with the analysis results from the 
finite element analysis. The boundary conditions of the FEM were 
generated by the baseline EnergyPlus model, which included the factors 
of heat convection and thermal radiation in both the interior and exte-
rior TABE surfaces. The generated boundary conditions of the FEM were 
validated by comparing the FEM-calculated heat flux with the Ener-
gyPlus model computed counterpart for the DOE’s prototype single- 
family residential building. For the domain knowledge-informed heat 
flux prediction, ML models were trained based on the established heat 
flux database. The models were trained with different features—the 
features were first selected by domain knowledge and then determined 
according to the correlation between each other and their importance. 
The domain knowledge was used to determine the potential features and 
their types (numerical or categorical). The performances of the models 
were quantified and compared by considering three performance met-
rics: the R2 value, the Root Mean Squared Error (RMSE), and the Mean 
Absolute Error (MAE). Additionally, a ground temperature uncertainty 
study was conducted to understand the effects of temperature on the 
predicted heat flux. The purpose is to quantify the ground temperature 
uncertainty on the accuracy of the ML-predicted heat flux. The ground 
temperature is selected for uncertainty study because, physically, it will 
have a significant influence on the surface heat flux of TABE when the IL 
is activated. In the predictor-guided thermal loop schedule selection, 
whole-building energy analyses were conducted for a series of predicted 
heat fluxes on a DOE prototype single-family residential building to find 
the thermal loop schedule resulting in minimum annual energy cost. The 
heat flux was calculated by the trained ML model and the FEM with the 
purpose of testing the capability of the trained ML model. 

2.1. Finite element modeling of TABE that uses a GL 

The TABE used in this study had nominal 2 × 4 in. wood studs (actual 
measurements of 1.5 × 3.5 in. [3.8 × 8.9 cm]) at 16 in. (40.6 cm) on the 
center, an interior 0.5 in. (1.3 cm) gypsum board, R-13 (13 h ft2⋅◦F/Btu 
[2.23 m2 K/W]) fiberglass bat insulation in the cavities, two layers of 0.5 
in. (1.3 cm) polyisocyanurate insulation, and exterior horizontal vinyl 
siding, as shown in Fig. 3(a). The panel assemblies meet the Interna-
tional Energy Conservation Code 2018 R-value requirements for a resi-
dential building wall in ASHRAE climate zones 3 to 5. To accelerate the 
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heat dissipation rates, interior and exterior thermal loops were inte-
grated into the TABE. When connecting to a GL, the TABE panel could be 
used as (1) an active protection to separate the indoor environment from 
the outdoor environment when activating the exterior thermal loop or 
(2) a heating and cooling source when activating the interior thermal 
loop with a suitable ground temperature. 

A COMSOL FEM, which is shown in Fig. 3(b), was established to 
simulate the heat flux and thermal performance of TABE panels. The 
output data of COMSOL, the heat fluxes, were then used as the inputs to 
(1) train the ML models and (2) compute the whole-building energy 
consumption in EnergyPlus. The input and output variables of the FEM 
are listed in Table 1. The variables include 10 input variables and 1 
output for each wall (4 walls for the DOE’s prototype single-family 
residential building that was studied). A span between adjacent ther-
mal loop tubes with a representative area (10.76 ft2 [1 m2]) of TABE was 
simulated for each wall. The area was subsequently scaled up to the 
entire opaque wall area of the prototype building. The wall surface 
temperature, air temperature, and radiation heat flux input data were 
obtained from a baseline EnergyPlus model that had a construction 
identical to the TABE but without metal layers and thermal loops. The 
ground temperature was calculated by using the method developed by 

Xing et al. [43] at the depth of 6.1 m (20 ft). The ground temperature at 
this depth varies annual, which is relatively cold at summer time due to 
the phase lag effect of ground heat transfer [43]. 

2.2. ML algorithms 

ML is a computation process used to discover patterns from data and 
is usually applied to model complex system behaviors or increase the 
computational efficiency. For TABE using a GL, the dynamic behavior is 
mainly due to the thermal loop schedule, creating the need to use an 
FEM to compute the wall heat flux, which is time consuming. ML could 
be a possible solution to reduce the computation time while maintaining 
good accuracy to differentiate thermal loop schedules. MLR, XGBoost, 
and DNN are adopted in this study for the following reasons: (1) MLR is 
the simplest shallow learning model that can be used to find a possible 
linear relationship between the responsive variable and the selected 
features, (2) XGBoost [44] is a shallow learning model developed 
recently with a strong fitting capability and is time efficient in training, 
and (3) DNN [45] performs very well with respect to complex systems 
but is relatively time-consuming to train. 

Fig. 2. A domain knowledge–informed, finite element–based ML framework for building installed TABE that uses a ground thermal loop.  
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2.2.1. MLR 
MLR is the simplest shallow learning model that can be treated as a 

perceptron, as shown in Fig. 4. Let (xi, yi) be a training instance where xi 
is the features (independent variables), and yi is the target variable 
(response variable). For MLR, the target variable is related to the fea-
tures through Eq. (1) [46]: 

ŷ = f

(
∑n

i=1
wixi + b

)

, (1)  

where ̂y is the predicted target variable (heat flux), W = (w1, w2,⋯, wn) is 

an n-dimensional coefficient vector, and b is the bias that needs to be 
learned to minimize the total squared error on the training data (i.e., 
∑n

i=1e2
i with ei = yi – ŷi), f(•) is the activation function, which is a linear 

function for MLR. 

2.2.2. DNN 
DNN is a type of ANN with multilayer perceptron [46] inspired by 

the networks of biological neurons found in the human brain and is 
intended to mimic the brain’s behavior, allowing computer programs to 
recognize patterns and solve problems. DNN comprises one input layer, 
one or more hidden layers, and one output layer. Fig. 5 shows the 
structure of a DNN with two hidden layers, formulated as Eq. (2) [45]: 

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

yj = f

(
∑n

i=1
wijxi + bj

)

yk = f

(
∑m1

j=1
wjkyj + bk

)

ŷ = f

(
∑m2

k=1
wkpyk + bp

)

, (2)  

where yj and yk are the outputs of hidden layer 1 (H1) and hidden layer 2 
(H2); wij, wjk, and wkl are the weights connecting the input layer, H1, H2, 
and the output layer; bj, bk, and bl are the biases; and m1 and m2 are the 
total nodes of H1 and H2. The activation function in Eq. (2) is not a linear 
function, which can be a rectified linear unit (relu) function, sigmoid 
function, and hyperbolic tangent function [46]. 

2.2.3. XGBoost 
XGBoost is a decision tree–based ensemble ML algorithm that uses a 

gradient boosting learning framework, as shown in Fig. 6. XGBoost was 
developed by Chen and Guestrin [44] and showed great success in recent 
ML competitions. XGBoost sequentially adds decision tree models to 
predict the errors of the predictor before it. XGBoost was mathematically 
formulated as Eq. (3) [44]: 

L(t) =
∑N

I=1
l
(

yI ,
(

ŷ(t− 1)
I + ft(xI)

))
+ Ω(ft), (3) 

Fig. 3. Prototype TABE wall panel and finite element model: (a) schematic of a prototype TABE panel with both interior and exterior thermal loops and (b) the 
established finite element model in COMSOL. 

Table 1 
Input and output variables of FEM.  

Input and output Variables 

Input (1) Indoor wall surface temperature (Tis) 
(2) Outdoor wall surface temperature (Tos) 
(3) Indoor wall surface convection coefficient (hi) 
(4) Outdoor wall surface convection coefficient (ho) 
(5) Indoor air temperature (Tia) 
(6) Outdoor air temperature (Toa) 
(7) Indoor surface radiation (qr,is) 
(8) Outdoor surface radiation (qr,os) 
(9) Ground temperature (Tgw) 
(10) Thermal loop schedule (TLS) 

Output (1) Heat flux from the walls to the conditioned space (qis)  

Fig. 4. Diagram of MLR structure.  
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where I is the Ith sample to be predicted, N is the total number of 
samples, t represents the tth iteration, l(yI, ŷI) is the loss function be-
tween the true label yI and the predicted label ̂yI, ft(xI) is the base learner 
(decision tree for XGBoost) added at the tth iteration, xI is the features of 
the Ith sample, and Ω(ft) is the regularization term to avoid overfitting. 

2.3. Hyperparameter tuning and performance metrics 

2.3.1. Hyperparameter tuning 
Hyperparameter tuning is the process of searching for the most 

suitable hyperparameters for a ML model to a specific data set. This 
study used the Bayesian optimization function provided by Hyperopt 
[47], which is suitable for hyperparameter tuning because it is a 
sequential design strategy for global optimization and does not assume 
any functional forms. For XGBoost, a total of eight parameters were 
tuned, as shown in Table 2. The XGBoost algorithm has many hyper-
parameters that can be tuned. For a detailed description of the hyper-
parameters, refer to the open-source XGBoost Python package. For DNN, 
the batch size, number of hidden layers, and optimizer were tuned as 

well as the number of neurons, learning rate, and dropout rate of each 
hidden layer, as shown in Table 3. The determination for the searched 
range of hyperparameters in XGBoost and DNN considered both their 
importance and typical ranges used in references and Kaggle commu-
nity.1 Meanwhile, we have used a relatively wide search range to 
leverage the capacity of HyperOpt. For example, 250 has been used as 
the maximum number of estimators for searching in XGBoost in 
Ref. [30] while this study used 500. In addition, the search ranges of the 
DNN hyperparameters are also considered for both training efficiency 
and accuracy. For example, the selection of the hidden layers in DNN is 
mainly considered in terms of training efficiency, and usually, 2–3 
hidden layers can meet the training accuracy requirement. On the other 
hand, a common practice in setting the number of neurons in each layer 
is to let it be 2n due to the binary property of the computer. In this study, 
we used a typical search range of 64 to 1024 neurons. After finding the 
best hyperparameters with Bayesian optimization, the model was 

Fig. 5. Diagram of DNN structure.  

Fig. 6. Diagram of gradient boosting structure.  

1 See https://www.kaggle.com. This is a very popular and famous machine- 
learning community. 
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trained with the training and validation data sets and finally applied to 
the test data sets for the TABE wall heat flux prediction with different 
thermal loop schedules for building energy management. The training, 
validation, and test data sets are detailed in Section 3.2.1. 

2.3.2. Performance metrics 
The performance of regression models can be assessed through 

multiple metrics. In this study, the prediction performances were eval-
uated using three metrics: the coefficient of determination (R2), the root 
mean square error (RMSE), and the mean absolute deviation (MAD), as 
shown in Eqs. (4)–(6), respectively. 

R2 = 1 −

∑N

i=1
(yi − ŷi)

2

∑N

i=1
(yi − y)2

, (4)  

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1
N
×
∑N

i=1
(yi − ŷ)2

√
√
√
√ , (5)  

MAD =
1
N
×
∑N

i=1
|yi − ŷ|, (6)  

where N is the number of observations, yi is the ith observed value 
calculated by FEM; y is the mean of the observed values, and ̂yi is the ith 
estimated value predicted by the ML models. The prediction accuracy 
increased as the errors of the RMSE and MAD decreased and the R2 

increased. Both RMSE and MAD were used because (1) the RMSE is more 
appropriate than the MAE when the model errors follow a normal dis-
tribution and (2) the MAE is more suitable than the RMSE when outliers 
are present in the model [48]. 

2.4. Predictor-guided thermal loop schedule selection 

The predictor was used to predict the heat flux of the TABE with 
different thermal loop schedules. For each thermal loop schedule, the 
heat flux of the TABE for a DOE prototype building could be predicted 
with the trained ML model (predictor). After that, the predicted heat 
fluxes were entered into the EnergyPlus model of the prototype building 
to calculate the annual energy consumption and costs. The annual en-
ergy consumption and costs for different thermal loop schedules were 
expected to be different. In this study, the thermal loop schedule that led 
to the minimum annual energy cost was selected. Assuming a total of ns 
thermal loop schedules, the selected (or optimum) thermal loop 
schedule, TLSselected, can be formulated as Eq. (7): 

TLSselected = min{g(TLS1), g(TLS2),…, g(TLSns )}, (7)  

where g(•) is used to represent the complex relationship between the 
annual energy cost and the thermal loop schedule. The function con-
siders the contributions from the ML predictor and the EnergyPlus 
model. 

3. Case study 

3.1. Climate condition and prototype building 

Charleston, South Carolina, USA, was selected as the location for the 
case study. It has a humid subtropic climate with mild winters; hot, 
humid summers; and significant rainfall all year. It has a cold winter 
(minimum outdoor air temperature − 5.6◦C) and hot summer (maximum 
outdoor air temperature 37.8◦C) with suitable ground temperatures at 
the depth of 6.1 m (average annual ground temperature around 19◦C). 

The DOE prototype single-family residential building [49] was used 
as the prototype building to test the proposed framework for predicting 
wall heat flux for building energy management. The prototype building 
is a two-story, south-facing building with a basement and a total floor 
area of 445 m2 (see Fig. 1). The model settings and schedules, such as 
occupancy, lighting, equipment, ventilation, and heating and cooling, 
were adopted from the prototype building and can be found in Ref. [49]. 
The Heating Ventilation and Air Conditioning (HVAC) system used an 
electric variable air volume reheat system for cooling and natural gas for 
heating. The set points for heating and cooling were 22.2◦C and 23.9◦C, 
respectively. The characteristics of the envelope and HVAC are sum-
marized in Table 4. 

3.2. Data preparation and feather selection 

3.2.1. Data preparation 
The training, validation, and test data were generated by the FEM 

(see Fig. 3) with different thermal loop schedules. The thermal loop 
schedules were classified into training schedules, validation schedules, 
and test schedules, which are summarized in Table 5. Three constant 
thermal loop schedules (CONST-S1, CONST-S2, and CONST-S3) were 
used as the training schedules to learn the potential nonlinear dynamics. 

Table 2 
Hyperparameters tuned for XGBoost.  

Hyperparameters Description Searched 
range 

Selected 

n_estimators Number of estimators [100, 500, 
10] 

240 

max_depth The maximum depth of tree [5, 20, 1] 19 
learning_rate Step size shrinkage used in update 

to prevent overfitting 
[0.01, 0.1, 
0.01] 

0.02 

gamma Minimum loss reduction required to 
make a further partition on a leaf 
node of the tree 

[0.02, 0.3, 
0.02] 

0.06 

min_child_weight Minimum sum of instance weight 
(hessian) needed in a child 

[1, 6, 1] 5 

subsample Subsample ratio of the training 
instances 

[0.2, 1, 
0.1] 

0.7 

colsample_bytree Subsample ratio of columns when 
constructing each tree 

[0.5, 1, 
0.1] 

0.8 

reg_lambda L2 regularizationa term on weights [0.1, 1, 
0.1] 

0.3 

f(⋅) Activation function – relu 
k Number of epochs – 200 
loss Loss function – MSE 
opt Optimizer – SGD  

a L2 regularization: adding penalty for residual leaves by using ridge regula-
rization (L2). 

Table 3 
Hyperparameters tuned for DNN.  

Layer Hyperparameters Description Searched range Selected 

1 n[fc] Number of neurons [64, 1024, 64] 768 
lr Learning rate [0.005, 0.1, 

0.005] 
0.02 

dp Dropout [0.25, 0.75, 0.25] 0.5 

2 n[fc] Number of neurons [64, 1024, 64] 640 
lr Learning rate [0.005, 0.1, 

0.005] 
0.025 

dp Dropout rate [0.25, 0.75, 0.25] 0.25  

bs Batch size [32, 256, 16] 48  
n[h] Number of hidden 

layers 
[2, 3, 1] 2  

f(⋅) Activation function – relu  
k Number of epochs – 200  
loss Loss function – MSE  
opt Optimizer Adam, SGD, 

RMSprop 
SGD  
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Then, an optimum schedule (OPT) was selected and used as the vali-
dation schedule to validate the model training. The OPT was generated 
by selecting the thermal loop schedules that minimized the hourly en-
ergy cost obtained from the schedules of CONST-S1, CONST-S2, and 

CONST-S3, which include a variety of thermal loop schedule dynamics. 
Lastly, two test schedules (i.e., Test Schedule 1 and Test Schedule 2) 
were used to test the trained ML models. 

The test schedules were composed of different combinations of the 
Heating season Schedule (HS), Cooling season Schedule (CS), and 
Transient season Schedule (TS), where TS is the same for all the test 
schedules. HS, CS, and TS were designed according to the time of days 
(TODs) and are presented in Fig. 7 (a)–(c). During the heating season 
(November–March), isolating the indoor environment from the cold 
outdoor environment is desired during the morning and night hours 
(TODs 0:00–10:00 a.m. and 16:00/17:00–24:00 p.m.) by turning on the 
EL. Meanwhile, using the relatively high ground temperature to heat the 
indoor environment could also provide heat during the morning and 
night hours by turning on the IL. On the other hand, heating re-
quirements during the peak time hours (TODs 11:00 a.m.–16:00/17:00 
p.m.) are not high owing to the outdoor solar radiation and the thermal 
loops can be turned off. Therefore, three different heat season schedules, 
HS1–HS3, were designed to reflect such a TOD regulation, as shown in 
Fig. 7(a). 

During the cooling seasons (May–September), the cooling re-
quirements for the morning and night hours (TODs: 0:00–6:00/8:00/ 
9:00 a.m. and 17:00/19:00–24:00 p.m.) are not high; therefore, one can 
either turn on the EL or turn off the thermal loops. Alternatively, the 
peak hours (TODs: 6:00/8:00/9:00 a.m.–17:00/19:00 p.m.) have a high 
cooling requirement, and the interior thermal loop could be turned on to 
use the cooling energy of the ground. Similar to the heating season, three 
different cooling season schedules, CS1–CS3, were designed, as shown in 
Fig. 7(b). 

The transition seasons (April and October) are characterized by 
relatively low heating requirements during the morning and night times 
(TODs 0:00–8:00 a.m. and 18:00–24:00 p.m.) and the cooling re-
quirements during the peak hours (11:00 a.m.–15:00 p.m.), as shown in 
Fig. 7(c). Therefore, the EL is turned on during the morning and night 
times, while the IL is turned on during the peak hours. For the remaining 
hours of a day, the thermal loops are turned off. 

Test Schedule 1 (Table 5) was used to analyze the uncertainty of 
ground temperature. It included TEST-S1 and TEST-S2, which are 

Table 4 
Summary of the characteristics of the envelope and HVAC.  

Category Item Summary 

Envelope Roof Area: 116.4 m2, R-value: 4.61 m2 K/W, solar 
reflectance: 0.25, thermal absorptance: 0.90 

Walls Area: 179.6 m2, R-value: 3.17 m2 K/W, solar 
reflectance: 0.50, thermal absorptance: 0.88 

Window Window to wall ratio: 0.184, U-value: 3.69 W/m2⋅K, 
solar heat gain coefficient: 0.334 

HVAC Heating 
facility 

Burner efficiency: 0.80 

Cooling 
facility 

Coefficient of performance: 4.07 

Set points Heating: 22.2◦C, cooling: 23.9◦C  

Table 5 
Thermal loop schedules.  

Category Schedule 
name 

Description 

Training CONST-S1 EL = 0 GPM, IL = 0 GPM 
CONST-S2 EL = 0.1 GPM, IL = 0 GPM 
CONST-S3 EL = 0 GPM, IL = 0.1 GPM 

Validation OPT Generated by selecting the thermal loop 
schedule that minimized the hourly 
energy consumption from the schedules 
of CONST-S1, CONST-S2, and CONST-S3. 

Test Schedules 1 
(Uncertainty 
analysis) 

TEST-S1 HS1 + TS + CS1 + Tg 

TEST-S2 HS1 + TS + CS1 + Tg with uncertainty 
(Tg_uncertainty) 

Test Schedules 2 
(Energy analysis) 

TEST-S1 HS1 + TS + CS1 
TEST-S3 HS2 + TS + CS2 
TEST-S4 HS3 + TS + CS3  

Fig. 7. Thermal loop schedules in different seasons—(a) heating season schedules (November–March), (b) cooling season schedules (May–September), and (c) 
transition season schedule (April and October)—and (d) ground temperature. 
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composed of HS1 and CS1 both considering and not considering un-
certainty in ground temperature (details illustrated in Section 3.2.2). 
Test Schedule 2 (Table 5) included three thermal loop schedules, TEST- 
S1, TEST-S3, and TEST-S4, designed for the energy analysis to discover 
(1) the accuracy of the trained ML models in predicting heat flux and (2) 
the energy consumption behavior of the prototype building under pre-
dicted heat flux and heat flux calculated by FEM. The designed test 
thermal loop schedules were based on the authors’ expertise, which did 
not necessarily lead to significant savings in energy consumption or cost. 
Additionally, the water flow rate for all the thermal loop schedules was 
set to 0.1 Gallons Per Minute (GPM) because preliminary studies showed 
that it is a relatively economical flow rate. 

The heat flux calculated by the FEM for different thermal loop 
schedules of the TABE south wall are shown in Fig. 8. When no water 
flow occurred (CONST-S1), the calculation simplified into a plain wall 
with a specific R-value, and the climate conditions dominated the heat 
flux behavior. It reflected as the heat losses through the wall during 
heating season (negative heat flux), and heat flow passed through the 
wall during the cooling season (positive heat flux), as shown in Fig. 8(a). 
When a constant thermal loop schedule or constant water flow was 
applied to the exterior thermal loop (CONST-S2), the thermal loop acted 
as a separator that isolated the indoor environment from the outdoor 
environment, and the TABE heat flux only slightly varied, as shown in 
Fig. 8(b). The heat flux was negative for most of the experiment’s 
duration because the ground temperature was lower than the indoor air 
temperature. When a constant thermal loop schedule was applied to the 
interior thermal loop (CONST-S3), the thermal loop acted as a cooling 
source constantly extracting heat from the indoor environment, as 
shown in Fig. 8(c). The seasonal variation of the cooling heat flux is 
mainly attributed to the annual ground temperature variation, as shown 
in Fig. 7(d). In Fig. 7(e), the uncertainty of a ±0.5◦C random uniform 
distribution was added to the ground temperature to study its effects on 

the predicted heat flux. When the thermal loop schedule was not con-
stant, the heat flux was considered to be a combination of constant 
thermal loop schedules, as shown in Fig. 8(d), (e), and (f). 

3.2.2. Domain knowledge–informed feature selection 
Feature selection is the process of obtaining a subset of an original 

feature set according to certain feature selection criteria [50]. In this 
study, the ten input variables of FEM were considered the original 
feature set. Fig. 9(a) presents the feature correlation map (Pearson’s 
correlation coefficients) for the nine variables except the thermal loop 
schedule. The thermal loop schedule was also selected as a training 
feature but was not included in the correlation study because the ther-
mal loop schedule needed to be treated as a categorical variable instead 
of a numerical variable. Additionally, a feature importance study was 
conducted based on the XGBoost regression. The results, shown in Fig. 9 
(b), suggested that the interior surface temperature (Tis) and interior 
surface radiation heat flux (qr,is) are the most important features, and the 
outdoor air temperature (Toa) and indoor air temperature (Tia) are the 
least important features. The F-score of the XGBoost regression measures 
how many times each feature was split. The features were normalized 
before being used to train the ML models. 

The feature correlation map (Fig. 9 (a)) shows that the original 
features were generally not correlated with each other and were used as 
the features in training the ML models. The features before normaliza-
tion are shown in Fig. 10. The features on the indoor side usually had a 
small variation compared with their counterparts on the outdoor side. 
The indoor and outdoor surface radiations were directed onto the sur-
face. As mentioned in this study, radiations were extracted from the 
baseline EnergyPlus model. The remaining two features, i.e., thermal 
loop schedules and ground temperature, are shown in Fig. 7. The ther-
mal loop schedule feature was transformed into a categorical feature by 
using OneHotEncoder in scikit-learn [51]. Putting domain knowledge in 
the features selection was critical because (1) the original features came 
from the FEM, which represented domain knowledge, and (2) the 
thermal loop schedule was treated as a categorical variable to differ-
entiate the interior, exterior, and no water flow of TABE. 

3.3. Heat flux prediction and predictor-guided thermal loop schedule 
selection 

3.3.1. Heat flux prediction 
The ML models were trained using the three constant thermal loop 

schedules (training data set) and the optimum thermal loop schedule for 
validation (validation data set), as shown in Table 5. The training data 
set was first shuffled to ensure its randomness. Then, 80% of the data 
was used for training and validation while the remaining 20% was used 
for testing. It is noted that the validation data set is not shuffled to ensure 
the training process can learn the heat flux dynamics of TABE in the OPT 
schedule. After training the ML models, the performance metrics (i.e., 
R2, RMSE, and MAE) were obtained and are shown in Table 6. The MLR 
model had a relatively poor performance with the R2 less than 0.8. The 
XGBoost and DNN predictions had an R2 larger than 0.8 for the test 
thermal loop schedules (i.e., TEST-S1–TEST-S4), indicating that 
XGBoost and DNN have the potential to be used for thermal loop 
schedule selection. DNN predictions have a slightly smaller RMSE but a 
slightly larger MAE, compared to XGBoost predictions. The predicted 
heat flux was further compared to determine which ML model is best to 
be used for the predictor-guided thermal loop schedule selection. 

Fig. 11 compares the heat flux predicted by the ML models for a 
typical week in the heating season, transition season, and cooling season 
for the south wall. The heat flux predicted by the MLR model differs 
largely when compared with its counterparts calculated by the FEM, as 
indicated by the performance metrics shown in Table 6. The heat flux 
predicted by the XGBoost and DNN models was close to the FEM cal-
culations. They also behaved similarly, although small differences were 
observed between them. For example, the heat flux predicted by the 

Fig. 8. TABE south wall heat flux generated by the training, validation, and test 
thermal loop schedules: (a) CONST-S1, (b) CONST-S2, (c) CONST-S3, (d) OPT, 
(e) TEST-S1 and TEST-S2, and (f) TEST-S3 and TEST-S4. 
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XGBoost model was slightly larger than the one predicted by the DNN 
model, as shown in the one-day heat flux plots in Fig. 11 (b), (d), and (f). 
Compared with the DNN model, XGBoost had a relatively simple model 
structure, and more importantly, its training time was much shorter. 

Therefore, XGBoost was selected, and its predicted heat flux was used as 
the predictor to guide the thermal loop schedule selection. A relatively 
large difference between the ML-predicted and FEM-calculated heat 
fluxes was observed when changing the thermal loop schedule from IL or 

Fig. 9. Feature relationships: (a) feature correlation map and (b) feature importance.  

Fig. 10. ML training features: (a) indoor and outdoor surface temperatures (Tis and Tos), (b) indoor and outdoor surface heat convection coefficient (hi and ho), (c) 
indoor and outdoor air temperature (Tia and Toa), and (d) indoor and outdoor surface radiation heat flux (qr,is and qr,os). 

Table 6 
Performance metrics of the training, validation, and test data sets.  

Metrics Models Training Validation TEST-S1 TEST-S2 TEST-S3 TEST-S4 

R2 MLR 0.74 0.76 0.77 0.77 0.62 0.70 
XGBoost 1.00 0.91 0.81 0.81 0.81 0.81 
DNN 1.00 0.91 0.81 0.81 0.81 0.81 

RMSE MLR 2.99 3.47 3.23 3.26 4.10 3.53 
XGBoost 0.34 2.19 2.95 2.97 2.94 2.82 
DNN 0.40 2.15 2.94 2.96 2.90 2.80 

MAE MLR 2.25 2.34 1.93 1.97 2.73 2.16 
XGBoost 0.25 0.68 0.89 0.94 1.02 0.88 
DNN 0.31 0.70 0.96 0.99 1.06 0.95  

Z. Shen et al.                                                                                                                                                                                                                                     



Building and Environment 234 (2023) 110157

11

EL to no water flow. This difference occurred mainly because the ML 
models were trained with constant water flows (CONST-S1–CONST-S3) 
in the thermal loops of TABE. Although ML models can efficiently pre-
dict the heat flux when the thermal loop schedule does not change 
frequently in a day, the models lack the ability to catch up the dynamics 
owing to changing the water flow from different thermal loop configu-
rations in a short time period. 

In addition, the annual heat flux was compared with the FEM 
calculated and the XGBoost predicted for TEST-S1, shown in Fig. 12(a). 
This comparison shows the heat flux behavior is similar to the repre-
sentative weeks; for example, some of the heat fluxes were 

overpredicted by XGBoost model during the cooling season, as shown in 
Fig. 11(e). All the heat fluxes plotted in Figs. 11 and 12 are of the south 
wall. All the remaining walls have heat flux behavior similar to the south 
wall and therefore are not plotted. 

The effects of ground temperature uncertainty on the predicted heat 
flux were also studied, and the results are presented in Figs. 8(e) and 
Figure 12(b). The FEM results show that the uncertainty in the ground 
temperature caused a relatively small heat flux change, as shown in 
Fig. 8(e). The XGBoost predicted results were found to be similar to the 
FEM, as shown in Fig. 12(b). Additionally, this study found that the FEM 
and XGBoost results changed consistently as the ground temperature 
changed. This result indicates that the XGBoost model caught well the 
effects of ground temperature uncertainty. 

Overall, the trained ML models, including the XGBoost and DNN 
models, performed well for the TABE heat flux prediction with respect to 
different thermal loop schedules and uncertainty of ground temperature. 
This study indicates that the trained ML models are capable of predicting 
TABE heat flux for different thermal loop schedules. This conclusion is 
important for similar applications because those applications only need 
to use data from constant thermal loop schedules to train the ML models. 
A relatively complex thermal loop schedule, such as the schedule OPT 
(see Table 5), should be used as the validation data to include potential 
system dynamics in the ML models. This study highlights the usefulness 
of ML in building energy management for active building envelopes, 
especially the water-based active building envelope. 

3.3.2. Predictor-guided thermal loop schedule selection 
The XGBoost-predicted heat fluxes were used as the inputs of the 

EnergyPlus model of the DOE prototype single-family residential 
building in Charleston to calculate the corresponding energy consump-
tions and costs. The calculated annual HVAC energy consumptions and 
costs of the test thermal loop schedules are presented in Table 7. The 
baseline energy consumption was obtained by directly running the 
prototype building in EnergyPlus. The energy costs were calculated by 
multiplying the obtained energy consumption of electricity and natural 
gas with their corresponding prices. The results show that TEST-S1 has 
the lowest energy consumption and cost, followed by TEST-S3, and 
TEST-S4 has the highest energy consumption and cost. The obtained 
energy consumptions and costs through the FEM-calculated and 
XGBoost-predicted heat fluxes are consistent with each other. The 
maximum annual energy cost difference between the obtained values is 
4%, whereas FEM-calculated savings were 30%, and XGBoost-predicted 
savings were 26%. These results indicate that XGBoost-predicted heat 
flux can be used for thermal loop schedule selection. 

The cooling energy consumption obtained by the XGBoost-predicted 
heat flux was constantly higher than the FEM-calculated heat flux 
because the XGBoost-predicted heat flux was higher when changing the 
thermal loop schedule from IL water flow to no water flow. However, 

Fig. 11. Comparison of TEST-S1 heat flux predicted by the ML models for a 
typical week and a day in different seasons: (a) and (b) heating season week 
(January 1–7) and day (January 2), (c) and (d) transition season week (April 
1–7) and day (April 2), and (e) and (f) cooling season week (August 1–7) and 
day (August 2). 

Fig. 12. Annual heat flux: (a) TEST-S1 FEM calculated vs. XGBoost predicted and (b) XGBoost predicted TEST-S1 vs. TEST-S2 (with considering ground temperature 
uncertainty). 
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this consistently higher measurement will not influence a user’s selec-
tion of a better thermal loop schedule for the building energy manage-
ment when adopting TABE that uses a ground thermal loop. 

Thermal loop schedules TEST-S3 and TEST-S4 led to a higher annual 
natural gas consumption. This higher consumption is mainly because the 
designed heating season schedules for these tests, HS2 and HS3, acti-
vated the IL during morning or night hours, as shown in Fig. 6(a). These 
schedules led to high heating requirements because the ground tem-
perature (<20.5◦C) is lower than the indoor setting temperature 
(22.2◦C). Therefore, activating the EL during this time would be bene-
ficial because the ground temperature is higher than the outdoor air 
temperature. This higher temperature is reflected in the natural gas 
consumption of the thermal loop schedule TEST-S1. However, the main 
purpose of the energy consumption and cost analysis was to show the 
effectiveness of applying the predicted heat flux in thermal loop 
schedule selection instead of optimizing the energy consumption and 
cost. 

Another important aspect is the total computation time used for the 
annual building energy analysis for the baseline building installed TABE 
walls. For the ML predictor-guided analysis (XGBoost-predicted heat 
flux), the total computation time is less than 1 min for a specific thermal 
loop schedule. Thanks to the simple structure of XGBoost, the annual 
heat flux calculation for four TABE walls uses less than 20 s. Meanwhile, 
the energy consumption analysis in EnergyPlus uses less than 40 s. On 
the other hand, the FEM calculated case uses around 12 h to calculate 
the annual heat flux of four TABE walls. For the studied four test thermal 
loop schedules, the FEM calculation used a total of around 48 h while the 
XGBoost prediction used only around 4 min, being 720 times faster. The 
ML predictor enables the possibility of developing an optimization al-
gorithm to find a suitable thermal loop schedule in future research. For 
example, the genetic based optimization such as particle swarm opti-
mization involves sampling thousands of potential thermal loop sched-
ules to find the potential optimum one. This becomes possible by using 
ML predicted heat flux for building installed TABE using ground energy 
source. 

4. Conclusions and future research 

In this study, a domain knowledge–informed, finite element–based 
ML framework was developed for the energy management of buildings 
installed with TABE that uses a ground thermal loop. Three ML models, 
MLR, XGBoost, and DNN, were employed to train and forecast the heat 
flux of TABE using the FEM simulated data sets under different thermal 
loop schedules. One of the ML models was selected based on three 
performance metrics and the predicted heat flux behavior. The predicted 
heat flux of different water flow schedules was used as the input of a 
DOE prototype building for building energy consumption estimations. 
Lastly, a water flow schedule was selected based on the energy con-
sumption and its corresponding energy cost results. Based on the pre-
sented results, the following conclusions are drawn.  

• The developed domain knowledge–informed, finite element–based 
ML framework can be applied to the energy management of build-
ings installed with TABE that uses a ground thermal loop. The energy 
consumption and cost obtained by the ML model are consistent with 
those obtained by the FEM for different thermal loop schedules.  

• The XGBoost model is a good candidate for predicting the heat flux 
because it can reach good accuracy (e.g., R2 value of 0.81) and is 
more efficient than the DNN model.  

• The XGBoost-predicted heat flux of TABE that uses a ground thermal 
loop catches well the uncertainty of ground temperature. This fact 
has been shown by the consistency of the XGBoost-predicted heat 
flux with the FEM-calculated counterparts.  

• The difference between the XGBoost-predicted and the FEM- 
calculated heat flux occurs mainly when the interior water flow 
changes to zero.  

• The annual energy cost of the FEM-calculated savings is 30%, and the 
XGBoost-predicted savings are 26% with a difference of 4% indi-
cating that the XGBoost-predicted heat flux can be applied to thermal 
loop schedule selection.  

• The use of ML predictor-guided thermal loop schedule selection 
significantly reduced the annual building energy analysis time. For 
the baseline building installed with TABE, XGBoost reduced time 
from around 12 h (using FEM) to around 1 min. This enables the 
possibility of developing an optimization algorithm to find a suitable 
thermal loop schedule in the future. 

Future research is needed to explore the following two aspects. 

• The durability issue of TABE. As an active water-based building en-
velope, the application of TABE that uses a GL for building energy 
management involves pumps, pipes, fittings, and the TABE panels. 
Routine maintenance should ensure the normal operation of the 
system. Special attention should be paid to the durability of the TABE 
panel as it involves the anisotropic layers (e.g., thin Al foils) and 
water tubes. The difference in the thermal expansion coefficient of 
different materials may build internal stress in the TABE panel and 
potentially leads to problems like breakage of the thin Al foils. For 
these concerns, ORNL has launched a field evaluation for the TABE 
panels on a research experimental facility in Charleston, South Car-
olina, U.S. from early 2020. So far, we have not observed any failure 
of the TABE panels.  

• The selection of the training and validation data sets. In this study, 
three constant schedules and an optimum schedule were used as the 
training and validation data sets. As stated in the results section 
(Section 3.3), the ML models lack the ability to catch up with the heat 
flux dynamics if the thermal loop configurations change rapidly. 
Future research is needed to understand how to build such dynamics 
into the training data set or the validation data set. 
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