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A.   Three- and four-phonon scattering rates calculations 

The three- and four-phonon scattering rates, 𝜏3,𝜆
−1 and 𝜏4,𝜆

−1, are calculated by Fermi's golden rule (FGR)1: 
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Here 𝜆 stands for (𝐪, 𝑗) with 𝐪 and 𝑗 labeling the phonon wave vector and dispersion branch, respectively. 

𝑛0 = (𝑒
ℏ𝜔

𝑘𝐵𝑇 − 1)
−1

 is the phonon occupation number, and 𝜔  is the phonon angular frequency. The 
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transition probability matrix ℒ  is determined by the third-order and fourth-order interatomic force 

constants (IFCs) 1: 
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where 𝑉±
(3)

 and 𝑉±±
(4)

 are  
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𝑁𝐪 is the total number of q points. The Kronecker deltas Δ± = Δ𝐪±𝐪′−𝐪′′,𝑹 and Δ±± = Δ𝐪±𝐪′±𝐪′′−𝐪′′′,𝑹 

describe the momentum selection rule and have the property that Δ𝑚,𝑛 = 1 (if 𝑚 = 𝑛), or 0 (if 𝑚 ≠  𝑛). 

R is a reciprocal lattice vector. 𝜙0𝑏,𝑙1𝑏1,𝑙2𝑏2

𝛼𝛼1𝛼2  and 𝜙0𝑏,𝑙1𝑏1,𝑙2𝑏2,𝑙3𝑏3

𝛼𝛼1𝛼2𝛼3  are the third- and fourth-order force 

constants, which are calculated from DFT. 𝑙, 𝑏, and 𝛼 label the indices of unit cells, basis atoms, and 

Cartesian directions, respectively. 𝐫𝑙 is the position of the unit cell 𝑙. �̅�𝑏 is the average atomic mass at the 

lattice site 𝑏. 𝑒 is the phonon eigenvector component. The eigenvectors are solved by using the dynamical 

matrix shown in Phonopy2. Details of correctly using the eigenvectors together with the phase term 

exp(𝑖𝐪 ⋅ 𝐫) can be found in Ref.3. 
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B.   Lattice thermal conductivity calculations 

The thermal conductivity along a crystal orientation 𝜅𝛼  (𝛼 = 𝑥, 𝑦, 𝑧) is calculated by using the exact 

solution to the Boltzmann transport equation4,5, 

𝜅𝛼 =
1

𝑉
∑ 𝑣𝛼,𝜆

2 𝑐𝜆𝜏𝜆
𝑖𝑡

𝜆

, (S.7) 

where 𝑉 is crystal volume, 𝑣𝛼 is phonon group velocity projection along the direction 𝛼, and 𝑐𝜆 is 

phonon specific heat per mode. 𝜏𝜆
𝑖𝑡 is the phonon relaxation time solved by an iterative scheme: 

𝜏𝜆
𝑖𝑡 = 𝜏𝜆(1 + Θ𝜆), (S.8) 
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𝑔𝑏 = ∑ 𝑓𝑖𝑏  (1 −
𝑚𝑖𝑏

�̅�𝑏
)

2

𝑖

, (S.11) 
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where 𝜉𝜆𝜆′ = 𝑣𝜆′,𝛼𝜔𝜆′/𝑣𝜆,𝛼𝜔𝜆. Equation (S.8) is solved iteratively because both the left and the right-hand 

sides contain the unknown variable 𝜏𝜆
𝑖𝑡, and thus the method is called Iterative Scheme. 𝑔𝑏 characterizes 

the magnitude of mass disorder induced by isotopes in lattice, where 𝑖 indicates isotope types, 𝑓𝑖𝑏 is the 

fraction of isotope 𝑖 in lattice sites of basis atom 𝑏, 𝑚𝑖𝑏 is the mass of isotope 𝑖, �̅�𝑏 is the average atom 

mass of basis 𝑏 sites. e is the phonon eigenvectors. 
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The thermal conductivities w/o four-phonon scattering is determined by including the 𝜏4,𝜆
−1 term in Eq. (S.9) 

or not. The evaluations of Eqs. (S7) – (S12) are done by using ShengBTE package6 with the FourPhonon 

extension module7. 

 

C.  Impact of grain size and vacancy defects 

The scattering rate of the grain boundary defects is calculated using equation S.13. Here, 𝜆 is short for a 

phonon mode (𝐪, 𝑗) with 𝐪 and 𝑗 labeling the phonon wave vector and dispersion branch, respectively. 

 𝜏𝑔𝑏,𝜆 represents the relaxation time of phonon at 𝜆 , 𝑣𝑝ℎ represents the phonon group velocity, and 𝐷𝑔𝑟𝑎𝑖𝑛 is 

the grain size. The method used in the calculation is similar as described in Ref. 8  

𝜏𝑔𝑏,𝜆
−1 =

𝑣𝑝ℎ,𝜆

𝐷𝑔𝑟𝑎𝑖𝑛
 (S.13) 

𝜏𝑑,𝜆
−1  = 9

𝜋

2
∗ 𝑓𝑣 ∗ (1 −

𝑚𝑉

𝑚𝑏̅̅ ̅̅
)

2

∗ 𝜔𝜆
2 ∗ 𝑝𝐷𝑂𝑆(𝜔) (S.14) 

The scattering rate of the crystal with vacancy defects is estimated using equation S.14. In the equation, 

𝑓𝑣 represents the concentration of the vacancy (either oxygen vacancy or uranium vacancy); 𝑚𝑉 represents 

the mass of the vacancy (which is equal to zero); and 𝑚𝑏̅̅ ̅̅  represents the mass of the basis atom. Similarly, 

𝜔 represents the angular velocities and 𝑝𝐷𝑂𝑆(𝜔) represents the partial density of states of a basis atom. 

For example, to calculate the scattering rate of oxygen vacancy, 𝑓𝑣 is oxygen vacancy, 𝑚𝑏̅̅ ̅̅  is the atomic 

mass of oxygen, and 𝑝𝐷𝑂𝑆(𝜔) is the partial density of states of oxygen atoms. 

The coefficient 9 in equation S.13 accounts for the mass and bond loss associated with the defect 

vacancy9,10. The 𝑝𝐷𝑂𝑆(𝜔) of the atoms is calculated so that the weighted sum of 𝑝𝐷𝑂𝑆 of all the atoms 

equals unity. The lattice thermal conductivity of the crystal with vacancy defect is then estimated based 

on the calculated scattering rate. The phonon dispersion and IFCs are the same as those of perfect crystals. 
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D.   Interatomic force constants (IFCs) calculation 

The ground-state 2nd, 3rd, and 4th-order IFCs are calculated by a finite displacement method using 

Phonopy2, Thirdorder6, and Fourthorder7, respectively. The interatomic forces with specific atomic 

displacements needed for these calculations are obtained by using the Vienna ab initio simulation package 

(VASP)11–13. 

The temperature-dependent IFCs are obtained from the temperature-dependent effective potential (TDEP) 

method14–16. The TDEP method extracts effective IFCs at a certain temperature by fitting the potential 

energy of a series of atomic trajectory images from ab initio molecular dynamics (AIMD) simulations at 

that temperature to the 2nd, 3rd, and 4th orders. To greatly reduce the computational cost, here the AIMD 

simulations for the TDEP calculation are replaced by the classical molecular dynamics based on machine-

learning potential. Given the high efficiency and accuracy of moment tensor potential (MTP)17–19 as 

demonstrated by previous studies20,21, we choose the MTP to develop an interatomic potential of UO2 by 

learning from the AIMD based data. The framework of MTP and the details of potential parameterization 

is presented in Section E. 

E.   Moment tensor potentials 

MTP is a local potential with a form with a linear combination of polynomial basis functions representing 

one-body, two-body, and many-body interactions 17–19. In the framework of the MTP, the total energy E 

of an atomic configuration with N atoms is the summation of contributions V of neighborhoods ui of each 

i-th atom: EMTP = ∑ 𝑉(𝑢𝑖)𝑁
𝑖=1 . The interatomic potential V can be expressed as a linear combination of a 

set of basis functions Bk(𝑢𝑖):    

𝑽(𝑢𝑖) = ∑ 𝜽𝑘𝑩𝑘(𝑢𝑖)k ,  
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where 𝜽𝑘  are the MTP parameters determined by minimizing the energy, forces, and virial stresses 

differences between Emtp and AIMD results on a training set of configurations. Bk(𝑢𝑖) are constructed with 

all possible contractions of the moment tensor descriptors 𝑴μυ(𝑖) including the radial fμ and angular part 

𝒓𝑖𝑗
⊕υ

, given as 

 Mμυ(i) = ∑ 𝑓𝜇(|𝑟𝑖𝑗|, 𝑆𝑖, 𝑆𝑗)𝑟𝑖𝑗
⨁𝜐

j , 

where rij is the distance of atom j relative to atom i, S is the type of atoms, and 𝑟𝑖𝑗
⨁𝜐 is the Kronecker 

product of 𝜐  copies of rij. Full expressions for 𝑓𝜇(|𝑟𝑖𝑗|, 𝑆𝑖, 𝑆𝑗)  can be found in Ref. 17–19. The MTP 

parameters are obtained by minimizing the error between the AIMD results and the MTP results: 

min ∑{𝑤𝑒Δ𝐸 + 𝑤𝑓Δ𝑓 + 𝑤𝑠Δ𝜎 }

K

, 

where Δ𝐸, Δ𝑓, and Δ𝜎 are the energy, force, and stress error between the AIMD data and the MTP results. 

𝑤𝑒 , 𝑤𝑓 , 𝑤𝑠  are weight factors of energy, forces, and stresses, respectively. K is the training set with 

different atomic configurations. 

In the present work, we use the functional form of MTP of level 26 and 6 radial basis functions so as to 

achieve a trade-off between the computational cost and the accuracy of MTP. The cutoff distance is set to 

5 Å, which enables the convergence of thermal conductivity with anharmonicity up to the third order. 

During the optimization, the fitting weights are set to default values, namely  𝑤𝑒 = 1, 𝑤𝑓 = 0.1, and 𝑤𝑠 =

0.001, which have been proven to be accurate in previous works19,21–23. 

F.  Computational details 
 

All density functional theory (DFT) calculations were carried out using the Vienna Ab initio Simulation 

Package (VASP)11 with the projector augmented wave method (PAW) and the plane-wave energy cutoff 

of 500 eV. The generalized gradient approximation (GGA) of Perdew-Burke-Ernzerhof (PBE)24 
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exchange-correlation functional was used for UO2, and the local density approximation (LDA)24 

exchange-correlation functional was used for Si and Ge. The lattices and internal atomic positions were 

fully relaxed with the total energy convergence threshold of 1×10−10 eV and a criterion of 1×10−4 eV Å-1 

for the forces on each atom, respectively. Note that the standard DFT calculations fail to simulate the 

strong correlations among the U 5f electrons as mentioned previously25–28, and the use of more powerful 

theoretical approaches such as hybrid functional density functional theory29 and dynamical mean field 

theory30 represents an important direction for future simulations. However, the significantly higher 

computational requirements for such approaches have so far precluded their ability to predict the electronic 

and phonon behaviors. Here, we adopted GGA with Hubbard-U correction (GGA+U)31 using the effective 

Hubbard parameter U=4.5 eV and J=0.51 eV 25,26,32,33 to deal with the physical properties of UO2. Despite 

that this method does not fully include the 5f strong correlation effects and may fail in calculating some 

properties, it is still of high fidelity in producing interatomic force constant and thus phonon dispersion 

curves. In addition to the fact that GGA+U is necessary to reproduce good electronic band gap31,34–36, we 

find that it is necessary to produce a better dispersion compared to GGA. 

 

To generate the training sets for the MTPs, we performed AIMD simulations for 1 ps under the isobaric-

isothermal (NPT) ensemble with a time step of 1 fs for 2×2×2 UO2 conventional cells at finite temperatures 

from 100 to 2200 K with the interval of 100 K, and for 4×4×4 Si and Ge primitive cells at temperatures 

ranging from 100 to 1000 K with the mesh of 100 K. The Monkhorst−Pack grid of 2 × 2 × 2 was used in 

the AIMD simulations. The forces, energies, and stresses extracted from 965, 814, and 740 uncorrelated 

configurations for UO2, Si, and Ge were selected by the MLIP package18 to train the MTP, respectively. 

 

In the ground-state IFCs calculations, 5×5×5 primitive cells were used with the Monkhorst−Pack grid of 

3 × 3 × 3. We used the interatomic forces of configurations extracted from the trained MTP as inputs of 

Phonopy2, Thirdorder6, and Fourthorder7 to calculate the 2nd, 3rd, and 4th -order IFCs, respectively. The 

3rd and 4th-order IFCs were calculated including up to fifth and second nearest neighbors, respectively, 

which has been proven to be enough for the convergence of κ7,23,37. 

 

To calculate the temperature-dependent IFCs, the TDEP package14–16 was employed using the potential 

energy of a series of atomic trajectory images as inputs. To generate the potential energy of a series of 

atomic trajectories, we used the trained MTP to conduct the classical MD simulations for 5×5×5 UO2 
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primitive cells at finite temperatures from 100 to 2200 K with the interval of 100 K, as implemented in 

the parallel molecular dynamics package LAMMPS38 and MTP. At each temperature, the system was first 

relaxed in the NPT ensemble using the Nose-Hoover thermostat for 50 ps. Then the system was run for 

further 100 ps to sample the forces, energies, and stresses data for each configuration with the time interval 

of 0.1 ps. Using these samples as inputs of the TDEP package, the 2nd, 3rd, and 4th -order IFCs were 

computed. 

 

With these IFCs, the lattice thermal conductivity was computed by solving the Boltzmann transport 

equation (BTE) with an iterative scheme, as implemented in the ShengBTE6,7 package. To effectively 

reduce the computational cost, herein the isotopic scattering and three-phonon scattering were included to 

solve the BTE iteratively while four-phonon scattering was considered at the level of the relaxation time 

approximation, which has been demonstrated to be valid in various materials1,7,37,39. Besides, the boundary 

scattering was considered by the simple empirical form:  
1

𝜏𝜆
𝑏 = |𝑣𝜆 |/𝐿 when the size (L) effect is involved. 

Finally, the thermal conductivity was solved with a 12 × 12 × 12 q-mesh, which enables a good 

convergence of κ, as shown in Fig.S10 in the Supplemental Material. 

 

 

G.   Impact of oxygen and uranium vacancies on thermal transport 
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Figure S1. Impacts of oxygen and uranium vacancy defects on the lattice 𝜅 of the UO2 (a) oxygen 

vacancy (VO) and (b) uranium vacancy (VU). The lattice 𝜅 decreases with oxygen and uranium vacancy 

defects. For the maximum VO studied (2.5%), 𝜅 reduces by 63% and 32.37% for the temperature of 

100K and 2000K, respectively. Similarly, for 2.5% VU defect, lattice 𝜅 reduces by 83% and 25.54% for 

the temperature of 100K and 2000K, respectively. The black line (No vacancy) represents the pure 

crystal without any oxygen or uranium vacancy defects. 

 

 

H.   Three and four-phonon scattering rates in UO2  

 

 

Figure S2. Phonon scattering rates of UO2 at 300 K, 1200 K, and 2000 K, calculated using temperature-

dependent IFCs. 
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I. Si and Ge thermal conductivity 

 

 

Figure S3. Small q-mesh (12×12×12) tests on the thermal conductivities of Si and Ge using various 

IFCs. Here we do not compare the results with experiment because a 36×36×36 q-mesh is necessary to 

get a converged thermal conductivity. Also, exchange-correlation function selection can have an impact 

on the final results. Here, we focus on self-consistent comparisons. 

 

 

 

J.   Phonon dispersion of UO2 
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Figure S4. Phonon dispersion relation of UO2. Black curve is calculated by ground-state DFT without hubbard U. 

The blue curve is calculated using GGA+U with machine learning potential fitted from ab initio molecular 

dynamics at 300 K. 

 

Temperature affects phonon dispersion, as commonly seen in solids, but the impact does not affect much 

phonon-phonon scattering space that was found in many materials40–44. Therefore, the thermal 

conductivity increases after considering TD IFCs is not because of phonon dispersion change. The 

calculated phonon dispersion spectrum along high-symmetry directions together with inelastic neutron 

scattering data from Refs.45,46 are shown in Fig. S4. The overall agreement of the calculated phonon 

dispersion is very good for the acoustic phonons and fairly good for the optical modes except for the 

highest one. This situation is similar to all earlier calculations45,47–50 using LDA, LDA+U, GGA, GGA+U, 

and even DMFT, which indicates that it is not an accuracy issue of our machine learning process. It might 

be because of the many-body interaction for 5f electrons in uranium45,51. Some works attribute such 

difference to the presence of a certain pressure in experimental measurement50. By imposing a pressure, 

the agreement of this branch agrees better with experiment 50. The temperature effect on phonon frequency 

shift as well as broadening is shown in Fig.S5 (b-f). 

 



12 
 

 

Figure S5. Calculated phonon dispersion of UO2 at various temperatures. The solid curves in all sub-

figures are calculated by using temperature-dependent IFCs in this work. In (a) and (b), the open red and 

white circles are INS experimental data and DFT calculated data from Ref.45, respectively. In (a), the open 

squares are experimental data from Ref.46. In (d-f), the linewidths of curves represent the summation of 

three and four-phonon scattering rates. 

 

K.  The κ convergence test for UO2 

Figure S6. The thermal conductivity without including four-phonon scattering at 300 K of UO2 with respect to the 

q mesh. 
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