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Evidence of fifth- and higher-order phonon scattering entropy of zone-center optical phonons
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Authors of recent studies have established the significance of fourth-order anharmonicity in the linewidth of
zone-center optical phonons, while it is unknown whether the fifth- and even higher-order phonon scattering is
important. In this paper, we estimate the convergence of phonon scattering entropy with respect to perturbation
orders. Using density functional perturbation theory, we calculate the three- and four-phonon linewidths for
zone-center optical phonons in a series of zinc-blende III–V compounds including InP, c-GaN, BN, AlSb, GaP,
InSb, AlAs, InAs, GaSb, and AlP. Our results show that, although the agreement between theory and experiment
is greatly improved by incorporating four-phonon scattering, considerable discrepancies still exist, especially at
high temperatures. We reveal that, on average, the phonon scattering entropy converges well at the eighth order,
and the fifth- and higher-order phonon scattering entropy is about 37% of that of four-phonon scattering at Debye
temperature and increases with temperature. With four-, five-, and higher-order phonon scattering included, the
linewidth deviates largely from the linear scaling with temperature. In this paper, we provide evidence of the
higher-than-fourth-order lattice anharmonicity in zone-center optical phonon linewidths as well as Raman and
infrared spectra.
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I. INTRODUCTION

Zone-center optical phonon linewidth is a basic quantity in
condensed matter, essential for a wide range of applications
including material characterizations, infrared (IR) spectra,
Raman spectra, and radiative heat transfer [1,2]. While
three-phonon scattering had been considered the dominating
mechanism for phonon linewidth [3–8], recently, fourth-order
phonon anharmonicity has been predicted to have a significant
or sometimes leading role [9–11]. First-principles predictions
with four-phonon scattering have explained well the measured
Raman or IR linewidths for a wide range of materials [11], and
the method has been further extended to strongly anharmonic
materials by including phonon frequency shift [12]. Although
these works have facilitated increasing acceptance of the
four-phonon scattering theory in spectroscopy techniques and
radiative transport, a natural question is: What is the impact of
the fifth- and even higher-order phonon scattering?

In this paper, we define and calculate the phonon scattering
entropy of different orders of scattering for the zone-center op-
tical phonons, using rigorous density functional theory (DFT)
calculations for 10 zinc-blende III–V semiconductors includ-
ing InP, c-GaN, BN, AlSb, GaP, InSb, AlAs, InAs, GaSb, and
AlP. We find that, although four-phonon scattering can largely
remedy the discrepancies between previous theory based on
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three-phonon scattering and experiment, the fifth- and even
higher-order phonon scattering can still be nonnegligible or
even significant, especially above Debye temperature TD.

II. METHODOLOGY

Phonon linewidth 2� is a Matthiessen sum of contributions
from isotope (τ−1

iso ) [13,14], three-phonon (τ−1
3,λ ) [15–17], four-

phonon (τ−1
4,λ ) [9,10,18], and higher-order phonon scattering

rates [3,19]:

2Γ = τ−1
iso + τ−1

3,λ + τ−1
4,λ + τ−1

5,λ + .... (1)

The formalisms and calculations of τ−1
iso , τ−1

3,λ , and τ−1
4,λ , are

well established on the first-principles perturbation theory,
and here, we follow the method as detailed in Ref. [11].
The second-, third-, and fourth-order interatomic force con-
stants for calculating phonon frequencies and scattering rates
were calculated from DFT within the local density approx-
imation, as implemented in the Vienna Ab initio Simulation
Package (VASP) [20,21]. The computational details as well as
phonon dispersions of all materials studied are given in the
Supplemental Material [22], including Refs. [23–37] therein.
Direct evaluation of the five-phonon (τ−1

5,λ
) and higher-order

phonon scattering rates is currently not available. To esti-
mate their significance, we define the scattering entropy of a
phonon mode as

S ≡ h̄2�

T
= h̄τ−1

iso

T
+ h̄τ−1

3,λ

T
+ h̄τ−1

4,λ

T
+ h̄τ−1

5,λ

T
+ ...

≡ S2 + S3 + S4 + S5 + ..., (2)
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FIG. 1. (a) T -dependent entropy series summation of the trans-
verse optical (TO) mode of InP with respect to n based on the
exponential form, (b) log-normal function, (c) Gamma function, and
(d) Poisson function. (e) Phonon scattering entropies of different
order as a function of T for the TO mode of InP. The blue (red)
circles represent the calculated S3 (S4), the black squares denote the
experimental data from Ref. [38], and the solid curves represent the
fitted results through Eq. (5). The total scattering entropy [Stot =
(S2 + S3 + S4)DFT + S5 + S6 + ... + S10] is provided for comparison
with experiment.

considering that the quantity h̄2� has a unit of energy and
its temperature sensitivity has a unit of entropy. With this
definition, S2, S3, S4, and S5 are the phonon scattering en-
tropies due to two- (isotope scattering), three-, four-, and
five-phonon scattering, respectively. They count the multiplic-
ities of phonon scattering reactions allowed by energy and
momentum conservations. They should all have units of kB,
the Boltzmann constant, allowing easy numerical comparison
of contributions at a particular temperature. They may them-
selves be T dependent: S4, S5, and above grows strongly with
increasing T .

Since τ−1
3,λ increases approximately linearly and τ−1

4,λ

quadratically with T as shown before [9–11], and by analogy,
τ−1

5,λ
increases cubically with T , h̄2� can be asymptotically

expanded as

h̄2� = A + BT + CT 2 + DT 3...

= T (S2 + S3 + S4 + S5 + ...), (3)

FIG. 2. T -dependent phonon linewidths 2� of the zone-center
transverse optical (TO) and longitudinal optical (LO) phonons in InP
and c-GaN. The solid red and blue curves represent our calculations
with and without τ−1

4,λ ; the solid black curves are the fitting results
considering the higher-than-fourth-order phonon scattering terms;
the squares denote experimental data for InP [38] and c-GaN [50].
Note that, for c-GaN, the T -independent background contribution
arising from scattering by lattice defects is excluded from the original
experimental data.

where the constant A accounts for the T -independent contri-
bution from scattering with isotopes, impurities, and defects,
BT for h̄τ−1

3,λ , CT 2 for h̄τ−1
4,λ , and DT 3 for h̄τ−1

5,λ
. Since

different materials have different Debye temperatures, for
cross-comparing between different materials, we introduce
the dimensionless temperature scale T̃ ≡ T/TD for normal-
ization, and Eq. (3) can thus be rewritten as

h̄2�

T
≡ S = CTD

(
Ã

T̃
+ B̃ + T̃ + D̃T̃ 2 + ...

)
, (4)

where CTD is the four-phonon scattering entropy at T = TD

(T̃ = 1), which is used to normalize all the other scattering en-
tropies, the dimensionless coefficients Ã ≡ (A/TD)/CTD, B̃ ≡
B/CTD, and D̃ ≡ DTD/C. If B̃ < 1, then the three-phonon
scattering is less important than the four-phonon scattering at
T = TD, and vice versa. If D̃ > 1, the five-phonon scattering
is more important than the four-phonon scattering at T = TD,
and vice versa.

Note that the higher the T , the more orders of scattering
terms need to be included, and the absolute convergence of the
linewidth will always be achieved. However, the higher-than-
fourth orders are impractical to calculate directly at present.
In this context, we attempt to establish an asymptotic form
for estimating the higher-order phonon scattering entropy and
for illustrating the convergence rate of the linewidth. In view
of the variation law of phonon scattering of different order
with T , we can easily deduce that the scattering entropy
of different orders of phonon anharmoncity should have the
form kB(T/TD)n−3 f (n), with f (n) representing the coefficient
function associated with the scattering order n (n � 3). In
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FIG. 3. Zone-center optical phonon linewidths 2� of the transverse optical (TO) and longitudinal optical (LO) phonons for group III–V
zinc-blende compounds. The solid red and blue curves represent our calculated results with and without τ−1

4,λ , and the solid black curves are the
fitting results considering the higher-than-fourth-order phonon scattering terms. Experimental data are taken from the following references:
c-BN [39,40], AlSb [41,42], GaP [43,44], InSb [45], AlAs [45], and InAs [46,47].

principle, the scattering entropy must be absolutely conver-
gent with n for any temperatures, thus f (n) should be in the
form of attenuation. By Occam’s razor, the simplest analytical
form is almost always the best. Here, we try to describe f (n)
with several different typical attenuation functions including
the exponential form, log-normal function, Gamma function,
and Poisson distribution. Once these functions allow the scat-
tering entropy series summation to converge to a reasonable
value for T < Tmelt, where Tmelt is the melting point, it makes
sense for us to choose them as the coefficient function f (n).

Taking the transverse optical (TO) mode of InP as an
example, we apply these four functions to test the con-
vergence rate of phonon scattering with increasing T . For
the exponential form, f (n) = exp[−α(T )n2 + β(T )], and
hence, the asymptotic form can be expressed as Sn =
kB(T/TD)n−3 exp[−α(T )n2 + β(T )]. By determining the pa-
rameters α and β from S3 and S4 at a given T , one can
extrapolate the magnitude of higher-order phonon scattering
and illustrate the convergence rate at different tempera-
tures, especially above TD. Figure 1(a) shows the entropy
series summation with respect to n based on this fitting.
It can be seen that, for T/TD < 3, the convergence is
achieved well at n = 10. For the log-normal function, f (n) =

1
(n−2)α

√
2π

exp{− [ln(n−2)−β]2

2α2 }. In Fig. 1(b), it appears that the
entropy series summation obtained by log-normal function
cannot give a convergent trend. For the Gamma function,
f (n) = (n−2)α−1 exp[−(n−2)/β]

�(α)βα , where α is a shape parameter, β

is a scale parameter, and � is the usual generalized factorial
�(α) = ∫ ∞

0 tα−1e−t dt . Note that n is set to 2 as the origin of
the Gamma distribution since two-phonon scattering gives no
contribution to the phonon anharmoncity. The entropy series
summation obtained by the Gamma function is shown in
Fig. 1(c). We can see that the convergence rate of scattering
entropy is rather slow, and the convergence is not achieved
even at n = 50. For the Poisson distribution, f (n) = αn−2e−α

(n−2)! ,
with the single parameter α being the expected rate of oc-
currences. Since the Poisson function has only one adjustable
parameter, it cannot describe the scattering entropy of differ-
ent order. To increase flexibility of the function, we introduce
an additional parameter β to the original Poisson function to
scale the amplitude of f (n). Hence, the eventual form should
be written as f (n) = β αn−2e−α

(n−2)! . Similarly, n is set to 2 as the
origin of the Poisson distribution. It is observed in Fig. 1(d)
that, at T/TD < 3, the convergence of phonon scattering by
fitting the Poisson distribution is well achieved at n = 10.
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FIG. 4. (a) The normalized four- and five-phonon phase spaces
of the zone-center transverse optical (TO) mode for materials stud-
ied. (b) The overall convergence speed of phonon scattering entropy
with respect to the reduced temperature (T/TD) when truncated to
the different orders, and (c) with respect to the scattering order n at
different temperatures. (d) The average scattering entropies S3, S4,
and S5 + S6+... for materials studied at different temperatures.

From the above results, we conclude that, among these
four functions, the exponential form and Poisson function
are optimal for the convergence of phonon scattering. The
exponential form, however, only works for the case where
the scattering entropy decays monotonically with increasing
n, whereas the Poisson function has the asymmetric shape
and can thus reasonably reflect the nonmonotonic variation
of scattering entropy, e.g., S3 < S4 > S5. Given the realistic
trend of scattering entropy with n, the Poisson distribution
is preferred for describing f (n). For further verifying the
reliability of the Poisson function in terms of the convergence
rate, we also show different orders of scattering entropy up to
the tenth order in Fig. 1(e). It can be seen that the calculated
S4 (red circles) from the DFT is fitted well over the entire T
range, whereas the calculated S3 (blue circles) deviates from
the fitted value below the TD, due to the fact that τ−1

3,λ ∼ T is
strictly satisfied only above TD. Given that the higher-order

contributions are negligible below TD, our proposed asymp-
totic form is valid in estimating higher-order entropy at high
temperatures. It is clear from Fig. 1(e) that, in combination
with the DFT calculations for S2, S3, and S4 and the analytical
fit for higher-order contributions, our estimated total scatter-
ing entropy [Stot = (S2 + S3 + S4)DFT + S5 + S6 + ... + S10]
(solid black line) can reasonably explain the experimental
results (black squares), implying the validity of the Pois-
son function in estimating the convergence rate of phonon
scattering.

Hence, in this paper, we propose the asymptotic form as

Sn = kB

( T

TD

)n−3

β
αn−2e−α

(n − 2)!
, (5)

which is the simplest analytical form of estimating the phonon
anharmoncity (n � 3) to achieve absolute convergence fol-
lowing Occam’s razor. Here, α and β are the fitting parameters
related to the truncation order of scattering entropy and scat-
tering strength, respectively, which are different for different
phonon modes in different materials.

III. RESULTS AND DISCUSSION

The calculated zone-center phonon linewiths that include
τ−1

iso , τ−1
3,λ , and τ−1

4,λ for the TO and longitudinal optical (LO)
phonons in InP, c-GaN, c-BN, AlSb, GaP, InSb, AlAs, InAs,
GaSb, and AlP are shown in Figs. 2–3 in comparison with
available experimental data. For InP, we find that, with τ−1

4,λ

included, our calculated results are in good agreement with
available experimental data [38], indicating that four-phonon
scattering does account for the discrepancies between previ-
ous theoretical and experimental works. Remarkably, for other
materials including c-GaN, c-BN, AlSb, GaP, InSb, AlAs, and
InAs, our predictions of 2�, even after including four-phonon
scattering, still deviate considerably from the experimental
data in Refs. [39–47]. This implies that the fifth- and even
higher-order phonon scatterings may become significant. For
AlSb, the three-phonon contribution is nearly zero due to the
large acoustic-optical (a-o) bandgap, and the four-phonon and
higher-order processes dominate the linewidths in the entire
T range. A similar case was also reported in BAs [11,48].
The large a-o phonon bandgap prevents two acoustic phonons
from combining as an optical phonon due to the restriction of
energy and momentum conservation as illustrated in Ref. [49].
For AlP and GaSb, which have no experimental data reported
yet, our predictions provide a theoretical basis for the Raman
measurements.

To assess the importance of fifth- and higher-order phonon
scattering terms, we apply Eq. (5) to fit to S3 and S4 of
the zone-center phonon linewidths of all the materials except
AlSb, and the phonon scattering entropy of different order
along with the fitting parameters is given in the Supplemental
Material [22]. Note that, for AlSb, where the three-phonon
contribution is nearly zero, our asymptotic form is not ap-
plicable anymore. The convergent linewidths obtained from
the analytical fit are compared with the available experi-
mental results in Figs. 2–3. For a certain mode of some
of the materials studied, such as the TO mode of InP, LO
mode of GaP, TO and LO modes of InSb, TO and LO
modes of AlAs, LO mode of InAs, including the higher-order
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TABLE I. Calculated characteristic scattering entropies S2 = A/TD, S3 = B, and S4 = CTD in terms of kB, and the dimensionless
coefficients Ã and B̃ for materials examined in this paper. The relative contribution of four- to three-phonon scattering entropy at RT,
S4(300K)/S3(300K), is also given.

Materials TD (K) S2 (kB) S3 (kB) S4 (kB) Ã B̃ RT-S4/S3

Si 645 0.039 0.34 0.076 0.51 4.39 10.59%
Ge 360 0.025 0.28 0.043 0.58 6.60 12.62%
Diamond 2280 0.026 0.12 0.091 0.28 1.32 9.93%
BAs 651 0.34 0.00023 0.12 2.76 0 52 173.91%
3C-SiC 1106 0.013 0.16 0.36 0.037 0.45 35.68%
c-BN 2025 0.030 0.19 0.24 0.13 0.65 9.73%
GaAs 313 0.021 0.23 0.13 0.16 1.74 51.86%
GaP 412 0.0044 0.69 0.096 0.046 7.19 8.89%
GaSb 240 0.0036 0.037 0.011 0.34 3.41 30.55%
c-GaN 584 0.0019 0.23 0.072 0.011 3.17 12.08%
InAs 229 0.032 0.41 0.082 0.39 5.04 24.70%
InSb 187 0.022 0.35 0.042 0.51 8.29 18.75%
InP 286 0.021 0.16 0.082 0.25 1.90 49.89%
AlAs 373 0.012 0.086 0.073 0.17 1.18 59.07%
AlSb 276 0.00031 0.00093 0.10 0.003 0.009 12 132.14%
AlP 525 0.092 0.71 0.12 0.74 5.70 8.50%
Average S̄ – 0.043 0.25 0.11 – – –

scattering terms can considerably improve the agreement
between the four-phonon theory-based calculations and ex-
periments, showing the importance of higher-order effects.
For both the LO modes of c-GaN and c-BN, our estimations
show that the contribution of higher-order scattering terms
is negligible, so we speculate that the difference between
experiments [40,50] and our calculations may be due to the
background scattering in the experiment, which is generally
inevitable especially at higher temperatures. It should be noted
that, in general, four-phonon scattering has a larger impact for
optical phonons than for the heat-carrying acoustic phonons.
Our previous studies [11,49] have shown that, for zone-center
optical phonons, the four-phonon scattering is dominated by
the recombination process λ1 + λ2 → λ3 + λ4. The optical
branches bunch together and allow the four modes λ1, λ2,
λ3, and λ4 to have similar energies, so they can easily satisfy
the energy conservation rule for the recombination process.
In contrast, the low-frequency acoustic phonons which carry
heat rarely participate in the recombination process of the
four-phonon scattering of optical phonons due to large en-
ergy differences. Therefore, it is understandable in certain
materials, four-phonon scattering can significantly affect the
linewidth of zone-center optical phonons, while not affecting
much the thermal conductivity, e.g., in c-BN [51]. For the
LO mode of InP and the TO mode of c-BN, the analytical
fit reveals the significant contribution from higher-order terms
at higher temperatures and overestimates the linewidth in
varying degrees as compared with the experimental results.
In addition to the limitations of the accuracy of our general
model, this overestimation, at least in part, should be at-
tributed to the T -induced phonon renormalization, which was
not considered in this paper but has been demonstrated to con-
siderably weaken the phonon scattering rates especially above
TD [52–54]. We also note that, with higher-order phonon scat-
tering included, the linewidth deviates largely from the linear
scaling with T , which offers an important theoretical basis

for experimentalists to study the Raman spectra at different
temperatures.

To explore the significance of fifth-order phonon scatter-
ing, we further calculate the phase space P, which describe
the probabilities of all the possible scattering events, of
the zone-center TO phonon for three- (P3), four- (P4), and
five-phonon (P5) scattering in these materials, as given in
the Supplemental Material [22]. Generally, the larger the
phase space, the stronger the phonon scattering. For ease of
comparison between different orders of scattering terms, we
normalize P4 and P5 against P3, and results are shown in
Fig. 4(a). As is seen in Fig. 4(a), P5 is generally compa-
rable with P4, especially for certain materials, e.g., c-GaN,
P5 is even an order of magnitude larger than P4, provid-
ing the evidence that the five-phonon scattering is indeed
nonnegligible.

Table I lists the calculated detailed characteristic scattering
entropies S2 = A/TD, S3 = B, and S4 = CTD in terms of kB,
and Ã and B̃ for aforementioned compounds as well as some
important materials studied in our recent work [11], including
Si, Ge, diamond, BAs, and 3C-SiC. Also, for ease of appre-
ciating the practical significance of the calculated numbers,
the relative contribution of four- to three-phonon scattering
entropy at room temperature (RT) S4(300 K)/S3(300 K) is
shown. The salient smallness of T̃3 in some materials (BAs,
AlSb, 3C-SiC, AlAs, and to a degree, InP) has to do with the
peculiar phonon dispersion relation in these crystals, where
the large a-o gap and the flatness of the optical bands make
the satisfaction of three-phonon selection rules very difficult if
not impossible. From the data, we have compiled the average
entropies at their respective Debye temperatures, as shown
in Table I. As is made explicit by the dimensionless expres-
sion in Eq. (4), when T̃ � Ã, the linewidth is dominated by
isotope/defect scattering. When T̃ > B̃, four-phonon scatter-
ing is more important than three-phonon scattering. We also
notice that the absolute magnitude of S4(TD) = CTD varies
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TABLE II. Calculated phonon linewidth (in units of cm−1) of the zone-center TO mode for materials studied in this paper as compared
with the experimental values at around T = TD.

Materials T (K) 2� (exp) (cm−1) 2� (τ−1
3,λ ) (cm−1) 2� (τ−1

3,λ+τ−1
4,λ ) (cm−1) 2� [τ−1

3,λ+τ−1
4,λ+(0.4τ−1

4,λ )] (cm−1)

Si 686 7.50 [55] 5.13 7.47 8.34
Ge 337 2.93 [56] 2.50 2.84 2.97
Diamond 1037 4.97 [57] 3.48 4.51 4.89
BAs 485 0.98 [11] 0.000017 0.97 1.33
InP 286 2.073 [38] 1.21 1.79 2.00
InSb 300 4.45 ± 0.39 [45] 2.66 3.16 3.35
c-BN 1826 20.96 [39] 8.98 18.79 22.42
AlAs 373 4.44 ± 0.35 [45] 0.91 1.56 1.80
AlSb 276 1.02 [42] 0.0021 0.80 1.10
GaAs 313 2.32 [38] 1.79 2.29 2.48
Average 2� – 5.16 2.67 4.42 5.07

quite a lot, ranging from 0.011kB in GaSb to 0.36kB in 3C-SiC,
implying that the four-phonon scattering strength is strongly
correlated to the inherent phononic structure of the material
such as the a-o gap, phonon bunching, and the flatness of the
optical bands. On average, S̄4 (0.11kB) is comparable with S̄3

(0.25kB).
To provide insights on the overall convergence speed, we

apply Eq. (5) to fit to S̄3 and S̄4 to extrapolate the total
scattering entropy Stot . Figure 4(b) shows the overall con-
vergence speed of the total entropy below T = 2TD when
truncated to the different orders. It is seen that the rate of
convergence obviously depends on T : the higher the tem-
perature, the slower the convergence rate. To look into the
convergence rate more closely, Fig. 4(c) also shows the the
overall convergence speed with respect to the scattering or-
der n for three certain temperatures. It is important to find
that, within 0.01% error, the scattering entropy at T = 0.5TD,
TD, and 2TD converges well at the 6th, 8th, and 11th order,
respectively. Physically significant is the fact that the Taylor
expansion sum in Eq. (3) appears to have reasonable con-
vergence rate on average but is not exceedingly rapid either,
which one probably should have expected at the outset. More
specifically, we find that the resulting higher-order scattering
entropy S5 + S6 + ... is 0.041kB at TD, as much as ∼37% of S̄4.
By carefully examining the T -dependent residual entropy be-
tween the experimental and the calculated scattering entropies
	S ≡ Sexp − S2 − S3 − S4 for these materials, it appears that,
on average, scattering processes higher than four-phonon scat-
tering could still contribute considerably to the linewidth, as
shown in Table II. On average, at T = TD, the three-phonon
scattering contribution to the linewidth is 2.67 cm−1, and
after including four-phonon scattering, the linewidth is 4.42
cm−1, still lower than the experimental value of 5.16 cm−1.
When an additional ∼0.37τ−1

4,λ is included at T = TD, the sum
will approximately converge to the experiment value, demon-
strating the robustness of our proposed asymptotic form in
evaluating the high-order scattering terms. Thus, the total scat-
tering entropies from all-order phonon scattering at T = TD

should be about S2 + S3 + S4 + (S5 + S6 + S6 + S7 + S8) =
0.043kB + 0.25kB + 0.11kB + (0.041kB) = 0.44kB. The fact

that the average total scattering entropy is of the order of
kB is physically significant since it indicates universally that
the zone-center optical phonon has a linewidth comparable
with the average phonon energy at TD. As is seen in Fig. 4(d),
the residual entropy from higher-order terms increases rapidly
with T : from our ab initio calculated data, we see that, at T =
0.5TD, the residual contribution from the fifth- and higher-
order scatterings is <2.86%, but at T = 2TD, that is almost
the same as S̄4 (0.22kB).

IV. CONCLUSIONS

In summary, we have calculated the zone-center optical
phonon linewidths of a series of technologically important
III–V compound semiconductors by first principles. Including
four-phonon scattering brings the predictions much closer
to experimental data than the three-phonon theory. How-
ever, for many materials including c-GaN, c-BN, AlSb, GaP,
InSb, AlAs, and InAs, the predictions, even after including
four-phonon scattering, still deviate considerably from the
experimental data. To examine the convergence of the phonon
linewidth, we use the phonon scattering entropy concept,
and an error-scale estimate for the previously untreated fifth-
and higher-order phonon scattering entropies is provided for
these materials on average. We find that, at TD, on average,
the convergence is well achieved at the eighth order, and
the average entropy of fifth- and higher-order scattering is
∼37% of that of four-phonon scattering. The total scattering
entropy is of the order of kB, which is physically signifi-
cant since it indicates universally that the zone-center optical
phonon has a linewidth comparable with the average phonon
energy at TD.
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Sec.1. METHODS

A. Phonon Linewidth

The vibrational properties of crystals are described by the vibrational Hamiltonian, which

can be Taylor expanded as Ĥ = Ĥ0+Ĥ3+Ĥ4+ · · · , where Ĥ0, Ĥ3 and Ĥ4 are the harmonic,

cubic, and quartic terms, respectively. Within anharmonic perturbation theory, Ĥ3 + Ĥ4

contributes a T -dependent linewidth 2Γ to the second order self-energy [1]. The contribution

from Ĥ3 is the well-known three-phonon scattering rate τ−1
3,λ [2–5], which is computed by the

summations of the probabilities of all the possible scattering events calculated by Fermi’s

golden rule (FGR) from density functional theory (DFT) :

τ−1
3,λ=

∑
λ1λ2

[
1

2
(1+n0

λ1
+n0

λ2
)L−+(n0

λ1
−n0

λ2
)L+

]
. (S.1)

here λ stands for (q, j) with q and j labeling the phonon wave vector and dispersion

branch, respectively. n0 = (eℏω/kBT − 1)−1 is the phonon occupation number, and ω is

the phonon angular frequency. L is the transition probability matrix, and the + and −

superscripts denote sums over allowed absorption and emission processes, respectively, under

the constraints of conservation of momentum and energy. Full expressions for all terms are

not included here for brevity; readers are referred to Ref. [6] for details.

Similar to the derivation of the three-phonon scattering rate, the four-phonon scattering

rate τ−1
4,λ [6–8] including all possible four-phonon interaction events can be written by

τ−1
4,λ =

∑
λ1λ2λ3

(
1

6

n0
λ1
n0
λ2
n0
λ3

n0
λ

L−− +
1

2

(1 + n0
λ1
)n0

λ2
n0
λ3

n0
λ

L+−

+
1

2

(1 + n0
λ1
)(1 + n0

λ2
)n0

λ3

n0
λ

L++).

(S.2)

Apart from the phonon-phonon scattering, isotopic disorder also has an effect on the

phonon linewidth, with rates given by [9, 10]

[∗] These authors contributed equally to this work.
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τ−1
iso =

πω2

2

∑
i∈u.c

g(i) |e∗λeλ′(i)|2 δ(ωλ − ωλ′), (S.3)

where g(i) =
∑

s fs(i)[1 − Ms(i)/M(i)]2 is the Pearson deviation coefficient of the isotope

masses {Ms(i)} of element i with isotopic abundance fs(i) and M(i) =
∑

s fs(i)Ms(i).

The full width at half maximum (FWHM) of phonons 2Γ thus can be calculated as

a Matthiessen sum of contributions from isotope scattering, three-phonon scattering, and

four-phonon scattering rates

2Γ = τ−1
iso + τ−1

3,λ + τ−1
4,λ + ... (S.4)

B. Three-phonon, four-phonon, and five-phonon phase spaces

The contribution to the phonon linewidth from three-phonon, four-phonon, and five-

phonon scatterings depends on the phase space and the scattering matrix. The former is

directly determined by the phonon dispersion, while the latter is determined by the third-

order, fourth-order, and fifth-order IFCs, which are very difficult if not impossible to calcu-

late due to the extremely expensive computational cost. The strength of phonon scattering

of different orders can somehow be measured by their phase spaces, which describe the

probabilities of all the possible scattering events. Generally, the larger the phase space,

the stronger the phonon scattering. All phonon-phonon scatering processes including three-

phonon, four-phonon, and five-phonon scattering processes are constrained to satisfy energy

and momentum conservation:

ωλ ± ωλ1 = ωλ2 , qλ ± qλ1 = qλ2 +G, (S.5)

ωλ ± ωλ1 ± ωλ2 = ωλ3 , qλ ± qλ1 ± qλ2 = qλ3 +G, (S.6)

ωλ ± ωλ1 ± ωλ2 ± ωλ3 = ωλ4 , qλ ± qλ1 ± qλ2 ± qλ3 = qλ4 +G. (S.7)

Here ωλ is the phonon frequency of mode λ, G is a reciprocal lattice vector that is zero

for normal processes and non-zero for Umklapp processes, and the ± signs correspond to

the two types of possible phonon-phonon processes. We define the phase space of each mode

at each q point available for three-phonon, four-phonon, and five-phonon processes, as the

sum over all possible modes subject to the constraints of Eqs. S.5-S.7:

P3 =
2

3Ω

(
P

(+)
3 +

1

2
P

(−)
3

)
, (S.8)
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P4 =
6

7Ω

(
1

2
P

(++)
4 +

1

2
P

(+−)
4 +

1

6
P

(−−)
4

)
, (S.9)

P5 =
24

15Ω

(
1

6
P

(+++)
5 +

1

4
P

(++−)
5 +

1

6
P

(+−−)
5 +

1

24
P

(−−−)
5

)
, (S.10)

where

P
(±)
3 (q) =

∑
λ1λ2

∫
BZ

dqδ(ωλ ± ωλ1 − ωλ2), (S.11)

P
(±±)
4 (q) =

∑
λ1λ2λ3

∫
BZ

dqδ(ωλ ± ωλ1 ± ωλ2 − ωλ3), (S.12)

P
(±±±)
5 (q) =

∑
λ1λ2λ3λ4

∫
BZ

dqδ(ωλ ± ωλ1 ± ωλ2 ± ωλ3 − ωλ4), (S.13)

where the integration in Eqs. S.11-S.13 is taken over the first Brillouin zone (BZ). The

quantity, Ω = njV 2
BZ (j=3, 4, 5 for three-phonon, four-phonon, and five-phonon processes,

respectively) with n phonon branches whose BZ has volume, VBZ , is a normalization factor

equal to the unrestricted phase space for each type of process. Herein the conservation

of energy in all processes is enforced by the Dirac delta distributions, which is further

approximated by Gaussian functions in our calculation. The factors on the right side of the

Eqs. S.8-S.10 arise to prevent multi-counting of scattering events. Additional factors (2/3,

6/7, 24/15) in Eqs. S.8-S.10 give P3, P4, P5 = 1 when the energy-conserving delta functions

in Eqs. S.11-S.13(4) are removed.

Table S1 lists three-phonon, four-phonon, and five-phonon phase spaces of the zone-center

TO phonon for sixteen materials.

C. Computational details

To obtain phonon scattering rates described above, the second, third- and fourth-order

interatomic force constants (IFCs) are needed. All force constants are calculated via real-

space finite displacement difference method, with 0.01Å of the magnitude of displacements.

The second-order force constant and phonon frequencies are calculated within the DFT

based on VASP [11, 12] as implemented in the open-source software packages Phonopy

[13], and the supercell is 5 × 5 × 5 primitive cells. To capture LO/TO splitting the non-

analytical interaction is determined by the Born effective charges. The third-order force

constants are calculated through Thirdorder [14], a package of ShengBTE, considering up
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TABLE S1: The phase spaces of the zone-center TO mode for materials studied for three-phonon

(P3), four-phonon (P4), and five-phonon (P5) scatterings.

Materials P3(10
−6) P4(10

−6) P5(10
−6)

Si 0.2357 0.4983 0.3002

Ge 0.4997 1.1036 0.5501

Diamond 0.05536 0.2475 0.08199

BAs 0.002628 0.5625 0.06547

3C-SiC 0.2211 0.4094 0.1789

c-BN 0.02848 0.2899 0.08383

GaAs 0.3891 1.2250 0.5102

GaP 0.2625 1.0917 0.2881

GaSb 0.1739 1.3574 0.5513

c-GaN 0.1947 0.4053 12.7081

InAs 0.4350 2.1005 0.4782

InSb 0.6113 1.5936 0.7444

InP 0.2169 1.2808 0.3345

AlAs 0.07516 1.0686 0.2607

AlSb 0.01642 0.9460 0.2414

AlP 0.3978 0.8231 0.3029

to the fifth nearest neighbor. The fourth-order force constant are calculated via the in-

house code by considering up to the second nearest neighbors. The third- and fourth-order

IFCs for all of materials examined in this work are performed with VASP using 4 × 4 × 4

primitive cells and 4 × 4 × 4 Monkhorst-Pack grid. The LDA is used for the exchange-

correlation functional with projector-augmented-wave method [15]. The plane-wave energy

cutoff of all the materials studied is set by adding 30% to the highest energy cutoff for the

pseudopotentials. Cell parameters and internal atomic positions are fully relaxed until the
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total energy and maximum ionic Hellmann-Feynman force converge to 10−10 eV and 10−6

eV/Å, respectively. The phonons are taken with a 16×16×16 q-mesh in the Brillouin zone

(BZ), which has been proven to afford good convergence of phonon scattering rates [7].

Considering that the large computational cost and the high memory requirement are

needed for third- and fourth-order IFCs calculations, herein we harness the space-group

symmetries of all crystals by calling the Atsushi Togo’s spglib which can greatly reduce the

required number of DFT calculations. In addition, it is noted that numerical uncertain-

ties will cause small violations in crystal translational and rotational invariance constraints

that has a large influence on phonon scattering calculation. Here a Lagrange-multiplier

symmetrization technique is employed to overcome this issue.

Sec.2. PHONON DISPERSIONS FOR ALL OF MATERIALS

To perform the phonon linewidth calculations, the accurate phonon frequencies and cor-

responding eigenvectors are required, which can be extracted from the diagonalization of the

dynamical matrix. Here we present the calculated phonon dispersions in the high-symmetry

directions for all of the materials considered in this work, along with available experimental

data for comparison(see Figs. S1–S10).

FIG. S1: Calculated phonon dispersion for c-BN in the high symmetry directions (solid curves).

Experimental data from Ref. [16] are given by black circles.

In the Table S2, we also list our calculated frequencies of TO and LO mode at Γ point

along with the values of ϵ∞ for each material considered in this work, comparing with the

existing experimental data.
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FIG. S2: Calculated phonon dispersion for GaN in the high symmetry directions (solid curves).

Experimental data from Ref. [17] are given by black circles.

FIG. S3: Calculated phonon dispersion for GaP in the high symmetry directions (solid curves).

Experimental data from Ref. [18] are given by black circles.

FIG. S4: Calculated phonon dispersion for GaSb in the high symmetry directions (solid curves).

Experimental data from Ref. [19] are given by black circles.
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FIG. S5: Calculated phonon dispersion for InAs in the high symmetry directions (solid curves).

Experimental data from Ref. [20] are given by black circles.

FIG. S6: Calculated phonon dispersion for InSb in the high symmetry directions (solid curves).

Experimental data from Ref. [21] are given by black circles.

FIG. S7: Calculated phonon dispersion for InP in the high symmetry directions (solid curves).

Experimental data from Ref. [22] are given by black circles.
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FIG. S8: Calculated phonon dispersion for AlAs in the high symmetry directions (solid curves).

Experimental data from Ref. [23] are given by black circles.

FIG. S9: Calculated phonon dispersion for AlP in the high symmetry directions (solid curves).

Experimental data from Ref. [24] are given by black circles.

FIG. S10: Calculated phonon dispersion for AlSb in the high symmetry directions (solid curves).

Experimental data from Ref. [25] are given by black circles.
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TABLE S2: The optical phonon frequencies (in the units of cm−1) at the Γ point, along with static

dielectric constant ϵ∞ for all of the materials listed in this work.

Materials TO mode LO mode ϵ∞

Present Exp. Present Exp. Present Exp.

c-BN 1068 1056 [26] 1298 1304 [26] 4.561 4.46 [27]

GaAs 270.8 267.5 287.89 285.2 13.7426 12.85 [28]

GaP 365.3 365 [29] 396.1 403 [29] 10.60 -

GaSb 228.98 228.2 [19] 230.3 229.3 [19] 169.50 -

GaN 565.9 552 [30] 730.7 740 [30] 5.72 -

InAs 218 221 [31] 233.8 246 [31] 19.643 -

InSb 169 181.5 [21] 183.5 [21] 194.7 20.94 -

InP 304.6 320.3 [31] 337.1 341 [31] 11.98 -

AlAs 359 352 [20] 394.2 400 [20] 9.48 -

AlSb 316.8 318.8 [25] 333.4 350 [25] 11.74 -

AlP 442.2 442.5 [24] 495 504.5 [24] 8.312 -

Sec.3. CONVERGENCE TEST FOR PHONON SCATTERING

If the coefficient function f(n) has physical meaning, the scattering entropy series sum-

mation must converge to a reasonable value for T < Tmelt, where Tmelt is the melting point.

Table S3 lists the Debye temperature TD, melting temperature Tmelt, and Tmelt/TD for all

the materials studied for reference.

We use Formula (5) in the main text to fit to S3 and S4 of all the materials except BAs

and AlSb, and the fitting parameters are summarized in Table S4. To assess the reliability

of the fit, we also show different orders of scattering entropy for the TO and LO modes of

materials we are studying in Figs. S11-S19. It is clear that our proposed Eq.(5) in the main

text is able to fit well the calculated S3 and S4 for all materials near the Debye temperature

and above. Also, we display our defined Poisson distributions for different α at a fixed value

of β = 1 in Fig. S20. It can be seen that the fitting parameter α is closely associated with

the peak position (corresponding to the maximum of scattering entropy at T = TD) and the

truncation order n. On this basis, we evaluate the order of maximum scattering entropy and
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TABLE S3: The Debye temperature, melting temperature, as well as Tmelt/TD for all the materials.

Materials TD (K) Tmelt (K) Tmelt/TD

Si 645 1687 2.62

Ge 360 1211 3.36

Diamond 2280 4300 1.89

BAs 651 2349 3.61

3C-SiC 1106 3003 2.72

c-BN 2025 3246 1.60

GaAs 313 1511 4.83

GaP 412 1750 4.25

GaSb 240 985 4.10

c-GaN 584 2773 4.75

InAs 229 1215 5.31

InSb 187 800 4.28

InP 286 1335 4.67

AlAs 373 2013 5.40

AlSb 276 1333 4.83

AlP 525 2803 5.34

truncation order for different materials at T = TD, as listed in Table S4. Note that for all

the materials the truncation order is obtained within an error of less than 0.01%. It can be

seen that at T = TD, the scattering entropy is dominated by three-phonon scattering in most

materials, while four-phonon scattering is dominant in c-BN, and six-phonon scattering is

dominant in 3C-SiC.
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TABLE S4: The fitting parameters α and β, and the order of maximum scattering entropy as well

as the truncation order at T = TD for the TO mode of different materials.

Materials α β Order of maximum entropy (n) Truncation order (n)

Si 0.4471 1.1892 3 6

Ge 0.3071 1.2394 3 6

Diamond 1.5167 0.3606 3 9

3C-SiC 4.5000 3.2006 6 15

c-BN 2.5263 0.9406 4 12

GaAs 1.1304 0.6301 3 8

GaP 0.2783 3.2752 3 6

GaSb 0.5946 0.1128 3 7

c-GaN 0.6261 0.6871 3 7

InAs 0.4000 1.5291 3 6

InSb 0.2400 1.8539 3 5

InP 1.0250 0.4351 3 8

AlAs 1.6977 0.2767 3 10

AlP 0.3380 2.9452 3 6

Average 0.8800 0.6849 3 8
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FIG. S11: Phonon scattering entropies of different order as a function of T for the LO mode

of InP. The blue (red) circles represent the calculated S3 (S4), and the solid curves represent the

fitted results through Eq.(5) in the main text.
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FIG. S12: Phonon scattering entropies of different order as a function of T for the TO and

LO modes of GaN. The blue (red) circles represent the calculated S3 (S4), and the solid curves

represent the fitted results through Eq.(5) in the main text.
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FIG. S13: Phonon scattering entropies of different order as a function of T for the TO and

LO modes of c-BN. The blue (red) circles represent the calculated S3 (S4), and the solid curves

represent the fitted results through Eq.(5) in the main text.
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FIG. S14: Phonon scattering entropies of different order as a function of T for the TO and LO

modes of GaP. The blue (red) circles represent the calculated S3 (S4), and the solid curves represent

the fitted results through Eq.(5) in the main text.
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FIG. S15: Phonon scattering entropies of different order as a function of T for the TO and

LO modes of InSb. The blue (red) circles represent the calculated S3 (S4), and the solid curves

represent the fitted results through Eq.(5) in the main text.
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FIG. S16: Phonon scattering entropies of different order as a function of T for the TO and

LO modes of AlAs. The blue (red) circles represent the calculated S3 (S4), and the solid curves

represent the fitted results through Eq.(5) in the main text.
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FIG. S17: Phonon scattering entropies of different order as a function of T for the TO and

LO modes of InAs. The blue (red) circles represent the calculated S3 (S4), and the solid curves

represent the fitted results through Eq.(5) in the main text.
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FIG. S18: Phonon scattering entropies of different order as a function of T for the TO and

LO modes of GaSb. The blue (red) circles represent the calculated S3 (S4), and the solid curves

represent the fitted results through Eq.(5) in the main text.
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FIG. S19: Phonon scattering entropies of different order as a function of T for the TO and LO

modes of AlP. The blue (red) circles represent the calculated S3 (S4), and the solid curves represent

the fitted results through Eq. (5) in the main text.
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FIG. S20: Our defined Poisson distributions for different α at a fixed value of β = 1.
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