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ABSTRACT: The emergence of wide and ultrawide bandgap
semiconductors has revolutionized the advancement of next-
generation power, radio frequency, and opto- electronics, paving
the way for chargers, renewable energy inverters, 5G base stations,
satellite communications, radars, and light-emitting diodes.
However, the thermal boundary resistance at semiconductor
interfaces accounts for a large portion of the near-junction thermal
resistance, impeding heat dissipation and becoming a bottleneck in
the devices’ development. Over the past two decades, many new
ultrahigh thermal conductivity materials have emerged as potential
substrates, and numerous novel growth, integration, and character-
ization techniques have emerged to improve the TBC, holding
great promise for efficient cooling. At the same time, numerous
simulation methods have been developed to advance the understanding and prediction of TBC. Despite these advancements, the
existing literature reports are widely dispersed, presenting varying TBC results even on the same heterostructure, and there is a large
gap between experiments and simulations. Herein, we comprehensively review the various experimental and simulation works that
reported TBCs of wide and ultrawide bandgap semiconductor heterostructures, aiming to build a structure−property relationship
between TBCs and interfacial nanostructures and to further boost the TBCs. The advantages and disadvantages of various
experimental and theoretical methods are summarized. Future directions for experimental and theoretical research are proposed.
KEYWORDS: ultrawide bandgap semiconductors, heterostructures, nanostructures, thermal boundary conductance, phonons

1. INTRODUCTION
Wide and ultrawide band gap semiconductors (WBGSs and
UWBGSs) have gained renewed and fast-growing interest,1

driven by the great potential in new technologies such as
power electronics (e.g., computer/phone chargers, inverters for
renewable energy grid and electric vehicles, power supply),
radio frequency (RF) electronics (e.g., wireless communica-
tions like 5G base station, satellite communications, radars),
and optoelectronics (e.g., light-emitting diodes) as shown in
Figure 1. Good thermal management is essential for these
devices to prevent or minimize severe self-heating effects2 and
maintain stability and reliability.2−6 As electronic devices
continue to push the boundaries of power density and size,
reducing thermal boundary resistance (TBR) at the interfaces
between the active material and substrate,7−14 which has a
substantial contribution to the near-junction thermal resist-
ance, has become increasingly important.15−17

Gallium nitride (GaN) and beta-phase gallium oxide (β-
Ga2O3) are the two most promising WBGS and UWBGS that
are being studied extensively nowadays. GaN transistors can be
operated with lower switching losses, higher frequency, and
higher power density18 compared to conventional Si-based

transistors. β-Ga2O3 is an emerging UWBGS for the next-
generation power devices owing to its ultrawide bandgap of 4.8
eV and a corresponding high breakdown field of 8 MV
cm−1.19−22 Aside from bandgap, thermal conductivity is also an
important factor to consider in order to operate at high power.
Figure 2 summarizes the bandgaps and thermal conductivities
of materials that are present in WBGS and UWBGS
heterostructures. Among them, Si and Ge are the first-
generation semiconductors with bandgaps of 1.12 and 0.66 eV,
respectively. Wide bandgap semiconductors include GaN (3.4
eV) and SiC (3.26 eV). Ultrawide bandgap semiconductors
include β-Ga2O3 (4.8 eV), diamond (5.47 eV), AlN (6.23 eV),
and AlGaN (3.4−6.23 eV). β-Ga2O3 attracted great attention
since 2012 because of the advancement in growth
technique22,23, which enables large-diameter, potentially low-
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cost, and high-quality wafers grown from the melt. The broad-
scale application of β-Ga2O3 is limited by its low thermal
conductivity and the difficulty of p-type doping.24 Diamond is
considered the ultimate UWBGS as it has the highest thermal
conductivity in nature, high breakdown field, high mobility,
and high saturation velocity.25 However, the application of
diamond is limited by the available wafer size (up to 1.5 in. for
now) and n-type doping. AlN has excellent bandgap and
thermal conductivity and is now very promising among
UWBGSs due to a recent advancement.26 Figure 2 also lists
important substrates including metals, quartz (SiO2), and
sapphire (Al2O3). Aluminum (Al) and gold are widely used for
electrical contacts in device fabrications,27 and SiO2 is typically
used near the gates of dielectrics.28 For better thermal
management, high-thermal-conductivity materials such as SiC
and diamond can be used as the substrate. More recently, the
growth of AlN has reached a maturity, making it another
promising substrate candidate.29−34

However, the interface between active materials and
substrates shows undesired high thermal resistance and
impedes heat dissipation in these electronic devices. To

improve the thermal boundary conductance (TBC), many
advanced experimental techniques have been developed to
enable the covalent bonding of many materials with atomic-
level clean contact, which in turn has improved the TBCs
significantly. These numerous papers reported various
interfacial structures including a third intermediate layer, an
amorphous interfacial region, defects, and disorder, which
result in various TBC values even for the same hetero-
structures. They also lack theoretical guidance on how to select
the interlayer materials and design the interface structure such
as the thickness of the interlayer, geometry of teeth, degree of
disorder, and concentration of defects. Therefore, there is an
urgency to review the experimental and theoretical works,
figure out the gaps, and point out the directions.

In this article, we review the recent progress of the TBC
enhancement for WBGS and UWBGS heterostructures and
point out future research directions. The review is organized as
follows: In Section 2, we briefly review the distinct importance
of thermal boundary conductance in overall thermal manage-
ment for WBGS and UWBGS devices. In Section 3, we recap
the start-of-the-art understanding of thermal transport
mechanisms across interfaces and the impacts of various
nanostructures. In Section 4, we briefly summarize the recent
advances in experimental growth and joining technologies as
well as TBC simulation methods. In Section 5, we summarize
in detail all the experimental and simulation TBC data for
GaN/diamond,52,53 GaN/Si,54 GaN/SiC,55 GaN/AlN,56

GaN/oxides,57 GaN/metals,58 Si/diamond,59 Si/SiC, β-
Ga2O3/diamond,60 β-Ga2O3/SiC,61 and β-Ga2O3/metals in-
terfaces to date. We extract the details of the interfacial
nanostructures in order to build a structure−property
relationship, which helps us understand the underlying
mechanisms for the TBC improvement for each interface. In
Sections 6 and 7, a summary together with possible strategies
to improve TBC and future research directions are proposed
for specific interfaces.

2. ROLE OF TBC IN (U)WBGS DEVICE THERMAL
MANAGEMENT

Wide and ultrawide bandgap semiconductors-based electronics
generate localized hot spots with a size of tens of nanometers
near the gate where a large electric field drop exists during
operation.7−14 The peak temperature of the hot spots limits
the device’s performance and reliability.24 Most of the near-
junction thermal management strategies aim to lower the peak
temperature by spreading the heat, to either the upper side
through the gate metal or the lower side through the
substrate.62 Before that, the localized heat must flow through
the semiconductor-metal interfaces and semiconductor-sub-
strate interfaces.63 That poses a critical role of TBC in these
electronics. For example, a GaN-diamond TBC of 50 MW m−2

K−1 is equivalent to the thermal resistance of 4 μm GaN or 44
μm diamond. A Ga2O3-SiC TBC of 50 MW m−2 K−1 is
equivalent to the thermal resistance of 300 nm Ga2O3 or 9 μm
SiC. The GaN or Ga2O3 layer thickness in the devices is a
balance of materials saving, thermal consideration, and electric
field blocking. It is desired to put diamond and SiC as close as
possible to the hot spots in order to save GaN or 2O3 materials
and make the GaN or Ga2O3 layer as thin as possible.
However, thin GaN or Ga2O3 layers cannot block the large
electric field due to dislocations and defects in GaN or Ga2O3
and along the GaN or Ga2O3 -substrate interfaces. Therefore,
the active GaN or Ga2O3 layer in the device is typically on the

Figure 1. Applications of WBGSs in future technologies where
thermal management is crucial.

Figure 2. Bandgaps and room-temperature bulk thermal conductiv-
ities of materials that are present in WBGS and UWBGS
heterostructures. Relevant references: Si,35,36 Ge,36 (wurtzite type)
GaN,37 4H-SiC,38 β-Ga2O3,

39 diamond,40,41 (wurtzite type) AlN,42

AlGaN,43−47 c-BN,48 Si3N4,
49 (cubic) BAs,50 and SiO2.

51
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order of 1 or 2 μm. In this scenario, the metal−semiconductor
TBC is comparably important for both β-Ga2O3 and GaN
electronics; the effect of semiconductor-substrate TBC on β-
Ga2O3 electronics is much less important than GaN electronics
because of the low thermal conductivity of β-Ga2O3. However,
it is much easier to grow high-quality β-Ga2O3 than GaN.
Therefore, it is possible to use a much thinner drift layer in β-
Ga2O3 electronics in the future than GaN electronics. Then,
the TBC of the β-Ga2O3-substrate interface becomes
important as well. For example, Wang and Zhou64 show that
for a 100 nm β-Ga2O3 on 100 μm AlN heterostructure, the
maximum temperature can be decreased by 38% when the
TBC increased from 10 to 310 MW m−2 K−1 under a power
10.1 GW m−2.

The above discussion focuses on near-junction cooling. After
heat spreading, the generated heat flows through the substrate
and thermal interface material, and finally dissipates into the
heat sink. The typical substrate thickness is 200 μm. Nowadays
backside polishing technique can reduce the substrate
thickness down to about 50 μm with additional cost. Thinner
substrates contribute to better heat dissipation while the extra
expense limits its wide adoption. In most cases, the thermal
resistances from the substrate and the thermal interface
materials are much larger than the thermal resistances of the
gate metal−semiconductor and semiconductor-substrate inter-
faces. Therefore, increasing the TBC discussed in this review
contributes to lowering the peak local temperature but is not
significantly helpful to lower the overall average temperature of
the devices. To lower the average temperature of the devices,
additional cooling strategies in the level of the device package
are needed, which are not the focus of this review. Device level
calculations of the effect of the semiconductor-substrate TBC
on the peak temperature of the devices can be found
elsewhere.7−14,64−68

3. INTERFACIAL PHONON TRANSPORT
MECHANISMS AND IMPACTS OF INTERFACIAL
STRUCTURES

Before diving into specific semiconductor interfaces, it is
necessary to review the current state-of-the-art understanding
of general interfacial thermal transport, in order to understand
the TBC values. Based on the review articles by Hopkins,69

Monachon, Weber, and Dames,70 Giri and Hopkins,71 and
Chen et al.,72 TBC depends on two factors, i.e., (a) the
intrinsic properties of the two materials comprising the
interface or irradiance of heat carriers bombarding an interface
and (b) the extrinsic impacts of the interfacial structure that
affect transmission coefficients, such as intermediate layers,
interlaced teeth, interfacial atomic mixing, and atomic
impurities and defects. The intrinsic properties cannot be
tuned for a given interface, and thus, we focus on the
discussion of extrinsic impacts on transmission in this article.

As shown in Figure 3, when a phonon approaches an
interface,73 the transmission can happen either elastically
(preserving frequency) or inelastically (varying frequency),
affected by phonon density of states (DOS) overlap, lattice
anharmonicity, interface defects and disorder, intermediate
material, interface bonding strength, etc. However, these
impacts are strongly materials dependent, i.e., the same
interfacial structure can increase or decrease the TBC. For
example, the compositional intermixing at the interface was
found to decrease the TBC for Cr/Si system,69 but was found
to increase the TBC for Si/Ge system.74,75 The interface

geometric roughness was found to decrease TBC for the Al/Si
system but increase TBC for the Si/diamond76 and Si/SiC
system.77 Many other examples can be found in ref 73. This
makes the guidance from the previous review articles based on
different systems limited when being applied to the systems
discussed in this article.

The possible impacts of the interfacial nanostructures on
TBC are summarized73 in Figure 4. Each interfacial structure

can have two competing effects on phonon transmissions�
one tends to increase phonon transmission while the other
tends to decrease phonon transmission. As a result, each type
of interfacial structure can either increase or decrease the
TBCs, depending on the properties of the bulk materials
comprising the interface and the detailed interfacial struc-
tures.73 For example, with the addition of an intermediate
layer, the phonon vibrational bridging effect can increase the
phonon transmission, but at the same time, the interlayer
introduces an extra interface which can reflect phonons.
Similarly, the introduction of interlaced teeth can increase the
contact area and increase phonon transmission, but at the same
time, the larger contact area can increase phonon defection and
reflection.77 The various TBC values reported in different
works for the same interface, as will be discussed in the
following sections, are mainly due to the various interfacial
nanostructures as shown in Figure 4.

4. SUMMARY OF EXPERIMENTAL AND SIMULATION
METHODS

Over the past decades, many advanced growth and bonding
techniques have been employed or developed for creating
high-quality WBGS and UWBGS heterostructures. The

Figure 3. Summary of phonon transmission mechanism across an
interface.

Figure 4. Summary of impacts of interfacial structures on TBC. (a)
Bare interface. (b) The addition of an interlayer can bridge phonon
spectra but will introduce one more interface. (c) Adding interlaced
teeth may improve transmission or reflection. (d,e) Interfacial mixing
and defects may enhance the inelastic transmission or reflection.
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methods together with their advantages and disadvantages are
summarized in Table 1. They include molecular beam epitaxy
(MBE),78−81 atomic layer deposition (ALD),82 physical vapor
depos i t ion (PVD)8 3 chemica l vapor depos i t ion
(CVD),4,79,84,85−98 metal−organic chemical vapor deposition
(MOCVD),78,99,100 plasma bonding,101 and very recently
developed nanoscale graphoepitaxy,76 hydrophobic bond-
ing,102 hydrophilic bonding,102,103 and room-temperature
(RT) surface-activated bonding (SAB).61,82,104−107 These
advanced technologies have successfully integrated GaN and
G a 2 O 3 w i t h s i n g l e c r y s t a l d i a -
mond.52,66,82−84,85−92,99,104,105,108,109 Figure 5 shows some
examples of the interfaces formed by advanced growth or
bonding technologies. It is seen that all have close atomic
contact without voids or gaps. Most heterostructures have
intermediate transition layers, namely, interlayers, which can
tightly bond the two materials. The thickness of the interlayer
can be as small as a few nanometers, which can have a minimal
increase in thermal resistance and at the same time can bridge
the phonon spectra of the two sides. The interface quality,
nanomorphology, and interlayer materials can be well
characterized, providing important details for theoretical
analysis. Among the methods, the most notable one is the
newly developed RT-SAB, which is not restricted by crystal
growth methods and can chemically bond two grown materials
at room temperature. This method also often leaves a third

intermediate amorphous layer at the interface, which can be
reduced and even eliminated by annealing.

Advanced measurement methods have also been developed
to measure the TBCs such as time-domain thermoreflectance
(TDTR),110 frequency-domain thermoreflectance (FDTR),111

optical transient interferometric mapping (TIM),112 contact-
less thermoreflectance (CTR),52 and transient thermoreflec-
tance (TTR).84,86,90,99,102,113,114 These experimental advances
have significantly improved the accuracy of the TBC data and
provided opportunities to push the boundaries of cutting-edge
high-energy density applications.

Recent years have also seen rapid progress in the
development of numerical, analytical, and atomistic methods
to understand and predict phonon thermal transport across
heterostructures. Comprehensive reviews can be found in refs
69−72. As shown in Table 1, these methods can be divided
into two categories. The first category includes Landauer’s
formula and Monte Carlo simulations, which require phonon
transmission coefficients as input. The second category is
molecular dynamics (MD), especially nonequilibrium MD
(NEMD), which does not require phonon transmission
coefficients as input. To calculate phonon transmission
coefficients, common ways are acoustic mismatch
(AMM),115 diffuse mismatch (DMM),116,117 and atomic
Green’s function (AGF).75,118−120 These methods, however,
assume elastic phonon transport and neglect the inelastic part.

Table 1. Summary of Experimental Methods for Growing (U)WBGS Heterointerfaces and Simulation Methods for Predicting
TBCs
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Although some works121−129 have improved these methods to
incorporate the inelastic contribution, they cannot include
other important phenomena such as the existence of interfacial
phonon modes and the local phonon nonequilibrium. The
wave packet method130−134 is an effective way to study phonon
transmission, but it can only study one mode at a time, which
is time-consuming. More importantly, it must be performed at
0 K, assuming all the other modes are frozen out, which misses
the phonon−phonon coupling effect at finite temperatures.
Compared to the above-mentioned methods based on phonon
transmission coefficients, MD is the best one which can
naturally include all the physical phenomena near the
interfaces. MD has two intrinsic limitations: it severely
depends on interatomic potentials, which are nonexistent for
most heterostructures (and may not be accurate if they exist);
it does not explicitly provide phonon transmission information.
The first limitation can be partly solved by machine learning.
Cheng et al. developed machine learning interatomic potential
for Si/Ge interface trained from DFT calculations and yielded
excellent results that agree well with experimental data.74 The
second limitation can be partly mitigated by various spectral
phonon analysis methods.135−144

5. TBCS OF (U)WBGS HETEROSTRUCTURES
5.1. GaN/Diamond Interface. Single crystal diamond has

the highest thermal conductivity of ∼2200 W m−1 K−1 and is
naturally considered the ideal candidate for the substrate of
wide bandgap electronics. The first reported TBC between
GaN and diamond is <10 MW m−2 K−1 by Kuzmik et al.145 in
2011 for an MBE-grown GaN on a single crystalline diamond
measured by the TIM technique. But they did not assess the
quality of the GaN buffer or interface, and their measurement
method is considered to have a large uncertainty. In 2013, Cho
et al. reported a much larger TBC of about 21−28 MW m−2

K−1 for a high-temperature bonded GaN/diamond interface
measured by using TDTR, a much more accurate method.108

An adhesion layer was found between GaN and diamond, but
no more details were provided for the adhesion layer. Right
after that, Pomeroy et al. increased the TBC further to 37 MW
m−2 K−1 for a CVD-grown interface, in which a ∼25 nm-thick
dielectric layer was found between GaN and diamond.146 As a
comparison, another sample with a ∼50 nm-thick dielectric
layer at the interface showed a TBC of only 28 MW m−2 K−190,
indicating that a thinner interlayer at the interface is better for
interfacial thermal transport. After that, many works have
strived to improve the quality of the interface and reduce the
interlayer thickness by the CVD and MOCVD growth
methods. Significant success has been achieved, as listed in
Table 2.

The minimum interlayer thickness obtained to date for
GaN/diamond interface is ∼5 nm. The interlayers such as SiNx
and AlN are deposited on GaN as protective layers first before
growing nanocrystalline diamond by CVD because the plasma
during CVD growth can etch GaN. The large roughness of the
CVD-grown nanocrystalline diamond affects thermal measure-
ments by optical techniques such as TDTR and TTR. Samples
with multiple layers have multiple unknown parameters in data
fitting, which are difficult to separate. The large roughness and
unknown fitting parameters contribute to the large error bars
in measuring these CVD diamonds grown on GaN samples.
The largest value reported to date is 167−400 MW m−2 K−1 by
Gu et al. in 201652 and 323 MW m−2 K−1 by Malakoutian et al.
in 2021.99 Both have a ∼5 nm SiNx interlayer. However, these
relatively high values may need reinvestigation because the ∼5
nm SiNx interlayer alone can provide more resistance than the
reported total thermal boundary resistance. The thermal
resistance of a 5 nm amorphous SiNx layer is about 5 nm/(1
W m−1 K−1) = 5 m2 K GW−1, which corresponds to a TBC of
200 MW m−2 K−1. Even if the thermal resistances of the two
interfaces (GaN-SiNx and SiNx-diamond) are zero, the TBC
cannot exceed 200 MW m−2 K−1. Even if the SiNx interlayer is
partially crystalline, its thermal conductivity cannot be high
due to the strong size effect (∼5 nm). We hypothesize that the
high TBC values might originate from the arbitrariness during
their fitting process, which contains too many unknown
parameters (six thermal conductivity values and five TBC
values given that their samples have six layers). In comparison,
the ∼5 nm AlN interlayer gives about 55−100 MW m−2 K−1

by Gu et al. in 201652 and Yates et al. in 2018.85 We are unable
to conclude that SiNx is better than AlN as the interlayer
because the TBC depends largely on the quality of the
interlayer as well.

Besides CVD, Cheng et al.104 and Mu et al.105 have
demonstrated the SAB method that can bond GaN with the
diamond at room temperature. After SAB, an interlayer made
of amorphous Si (a-Si) and amorphous diamond (a-diamond)
is left between GaN and diamond. A subsequent high-
temperature annealing process can turn the amorphous layer
into crystalline, which can further improve the TBC.
Amorphous materials typically have much lower thermal
conductivity than their crystalline counterparts. The measured
TBC is found to increase with decreasing interlayer (a-Si + a-
diamond) thickness. The minimum interlayer obtained is 2 nm
a-Si + 2.2 nm a-diamond, giving a TBC as high as 92 MW m−2

K−1 in ref 104. This value can be possibly further increased
after subsequent high-temperature annealing to promote the
crystalline phases. Applying the SAB method to achieve high
TBC is new, and we expect more work will be done in the
coming years with thinner and annealed interlayer for GaN/

Figure 5. High-resolution TEM images of state-of-the-art interfaces
for Si/Ge,74 GaN/diamond,85 GaN/SiC,106 Ga2O3/diamond,82 and
Ga2O3/SiC.61 Reprinted in part with permission from refs 74, 85, 106,
82, and 61. Copyright 2021 The Author(s). Copyright 2018 American
Chemical Society. Copyright 2019 American Chemical Society.
Copyright 2020 American Institute of Physics. Copyright 2020
American Chemical Society.
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diamond interface or directly bonded GaN-diamond interface
without interfacial layers, and further increased TBC is
expected.

In Figure 6, we have summarized the TBC with respect to
the thickness of the interlayer, from which the general trend
that TBC increases with decreasing thickness can be found.
Adding SiNx or AlN between GaN and diamond can (i)
enhance the transmission by strengthening the chemical
bonding, (ii) increase transmission by the phonon bridging
effect, and (iii) decrease the transmission by introducing one
more interface. Diamond and GaN have a large phonon
spectra mismatch, especially for the acoustic phonons since
diamond’s acoustic phonon frequency range is more than three
times that of GaN. This gap is bridged by SiNx and AlN, whose
acoustic phonon frequency range is half of that of diamond. If a
material with a closer acoustic phonon frequency range to
diamond can be found, it will have the potential to further
increase the TBC.

Despite the significant advances in the experiment, the
progress of GaN/diamond TBC simulations has lagged. To
date, besides the traditional AMM and DMM models, which
cannot include inelastic scattering and thus are inaccurate, the
only atomic level simulation was done by Tao et al. in 2017147

with NEMD simulations. The TBC obtained is ∼13 MW m−2

K−1. Although it locates inside the range measured for bare
GaN/diamond interface without an interlayer, the match is
more likely a coincidence because experimental sample has a

Table 2. Thermal Boundary Conductance between GaN and Other Materialsa

aGreened and greyed boxes are for experimental and simulation data, respectively. *These values may have a large uncertainty.

Figure 6. TBC with respect to the thickness of interlayer for various
interfaces. Only the data with clear interlayer information are
included.
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bad quality of the interfaces (such as voids). More importantly,
the NEMD simulations employ a Tersoff empirical potential
that cannot reproduce the phonon dispersion of diamond
correctly147 and was developed for the GaN/SiC interface150

rather than the GaN/diamond interface. The potential for
cross-interface interaction is developed by a rough mixing rule,
and the interfacial structure produced by this potential is not
calibrated by the experiment to any extent. It would be worth
creating a more realistic potential and investigating the
interfacial reaction from the first principles.
5.2. GaN/SiC Interface. SiC is one of the three commonly

used substrates for the growth of GaN (the other three are Si,
GaN, and Al2O3). Without special notation, SiC is referred to
the 4H phase of SiC, which is more commonly studied than
the other phases. Since SiC has a high thermal conductivity of
∼350 W m−1 K−1,169 which is higher than most other materials
although lower than diamond, it is an ideal substrate for the
thermal management of GaN. The first reported TBC of the
GaN/SiC interface is about 8.3 MW m−2 K−1 by Kuzmik et al.
in 2007.149 No details were given regarding the interface
quality. Later in 2012, Cho et al. measured an MOCVD-grown
GaN/SiC interface with a ∼36 nm-thick AlN interlayer using
TDTR and showed a significantly larger TBC of ∼200 MW
m−2 K−1.78,148 During the epitaxial growth, a layer of AlN
transition layer is usually added because of the lattice mismatch
between GaN and SiC. Several other works have reported
similar TBCs with different growth methods and interlayer
contents, which are summarized in Table 2, in the order of
interlayer thickness. A similar trend as for GaN/diamond
interface is observed, i.e., thinner interlayer results in higher
TBCs. The highest TBC achieved to date is ∼230 MW m−2

K−1. The first work that achieved this record-high TBC was
done by Ziade et al. with a clean interface without an interlayer
using the MBE growth method in 2015.80 Note that the direct
growth of GaN on SiC would sacrifice the quality of the GaN
layer. In 2019, Mu et al. achieved a similar record-high TBC by
using room-temperature SAB, followed by 1000 °C anneal-
ing.106 Different from epitaxial growth, SAB can directly
integrate high-quality single-crystal GaN with high-quality
single-crystal SiC. Before the annealing, the interface contains a
∼3 nm amorphous SiC interlayer, which gave a lower TBC
value of ∼170 MW m−2 K−1. After annealing, the amorphous
layer turned to crystalline, resulting in a high TBC of ∼230
MW m−2 K−1. The SAB method followed by high-temperature
annealing could be a simple and effective method to achieve
high TBC interfaces. In comparison, MBE growth is slow and
expensive and may not work for some materials like GaN and
diamond due to lattice mismatch and thermal expansion
mismatch.

The higher TBC of GaN/SiC than GaN/diamond is
understandable since the phonon spectra mismatch between
GaN and SiC is smaller. Compared to the GaN/diamond
interface, many more simulation works have been conducted
for GaN/SiC interfaces. This is because GaN and SiC share a
similar cell structure, and the interatomic potential between
GaN and SiC can be readily constructed by mixing the
individual potentials of GaN and SiC using the mixing rule.
Since the interaction between GaN and SiC was not derived
from first-principles simulations and the interface structure was
not validated against the experiment, it is expected that the
obtained TBC values could not match experimental data, as
seen in Table 2.

The first atomistic simulation work was done by Hu et al.150

in 2011. Through NEMD simulations with the Tersoff
potential, they obtained the TBC of the GaN/SiC interface
with a nonepitaxial layer of about 520 MW m−2 K−1. The
overprediction compared to experimental data is because the
simulations assumed perfect interfaces and oversimplified
interatomic potentials. Two higher TBC values, i.e., ∼800
and 570−630 MW m−2 K−1, were achieved by incorporating a
layer of 1 nm-long, 8 nm-wide interlaced teeth, and a 1 nm
AlN film between GaN and SiC, respectively, indicating that
the nanoengineering can significantly improve the TBC.
Subsequently, Hu et al.151 conducted similar NEMD
simulations for GaN/SiC and GaN/monolayer graphene/SiC
interfaces and obtained 420 and 601 MW m−2 K−1,
respectively, indicating that adding graphene as an interlayer
can significantly improve the TBC. Also, they found an
unexpected temperature drop at the near-interface region,
which suggests that the interfacial thermal transport was not
dominated by the interface thermal resistance but by the
resistance at the near-interface region. However, this
phenomenon has not been observed by other studies yet.

In 2016, Lee et al.152 demonstrated via NEMD simulations
that by introducing an experimental achievable nanostructured
interface with square-shape pillar arrays for GaN/SiC, the TBC
can be promoted by 42% from 470 to 670 MW m−2 K−1.
Whereafter in 2017, they studied the impacts of interlayer
(made of artificial wurtzite compound AB) for the GaN/SiC
interface,153 i.e., GaN/AB/SiC. By varying the mass ratio
between elements A and B, they were able to probe the role of
optical phonons in the intermediate layer in affecting the TBC.
It was found that the maximum TBC can reach 971 MW m−2

K−1, 22% higher than that of the bare SiC/GaN interface by
setting the mA = 51.7 and mB = 10.3 a.m.u. The results reveal
that the optical phonon spectra, which are sensitive to relative
atom mass, can significantly impact thermal transport. The
values obtained in this study are a bit larger than widely
reported (470−530 MW m−2 K−1) in related papers by MD
simulations. This is because GaN and SiC only differ from each
other in atomic masses in their model�they ignored the
differences in lattice structures and interatomic potentials of
GaN and SiC for the sake of convenience. The lattice
mismatch, atomic rearrangement, and different interatomic
potentials can all introduce extra thermal resistance.

Afterward, Lee et al.155 investigated the role of isotope via
NEMD. Their calculation results demonstrated that the 15N
doping within a skin depth of 4 nm could increase the TBC by
as much as 18% from 470 to 555 MW m−2 K−1 compared to
the isotopically pure case. The augmentation in TBC by
isotopes was attributed to the enhancement of preinterface
phonon scattering induced by isotopes, which facilitates the
redistribution of phonon energy to favor a better overall
interfacial thermal transport. Similarly, the impact of light
atoms on the TBC of the GaN/SiC interface was studied by Li
et al. using the NEMD method in 2019.154 It was found that
substituting Ga atoms with lighter atoms (e.g., boron) with
50% concentration near the interface could increase the TBC
from 495 to 755 MW m−2 K−1, an improvement as high as 50%
when the interlayer is 2.5 nm thick. Decreasing the content of
light atoms or just introducing light atoms interstitially can
lead to a less significant enhancement on TBC as shown in the
table. Their spectral analysis indicates that light atoms with
high velocities can introduce mid- and high-frequency phonon
modes which can couple well with the counterparts on the
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other side of the interface, consequently enhancing the TBC.
These simulations provide valuable guidance for TBC
improvement but also present a huge gap between simulation
and experiment.
5.3. GaN/Si Interface. Similar to SiC, Si is a commonly

used substrate of GaN. Due to the large lattice mismatch
between Si and GaN, an AlN transition film is commonly used
as an interlayer to release stress. Thicker intermediate AlN
leads to a higher quality of GaN but possibly reduces the TBC
at the same time. Both MBE and MOCVD can well control the
growth thickness of AlN. Using MBE, Cho et al.78,148 grew
GaN on Si containing a 38 nm-thick AlN interlayer in 2012.
The TBC was reported as 188 MW m−2 K−1 at room
temperature78,148 and was later corrected to 128 MW m−2

K−1.79 In 2015, Yates et al.100 grew a GaN/Si interface by
MOCVD with a 100 nm-thick AlN interlayer and measured
the TBC of 263 of MW m−2 K−1. This larger TBC with thicker
interlayer is counterintuitive and might be because of the
higher GaN quality.

Much recently, Yang et al.83 estimated the overall heat
dissipation performance of GaN/Si interface with commonly
used solders like AuSn as bonding layers, instead of AlN,
grown by PVD. The total TBC was shown to be 16.5 MW m−2

K−1, substantially lower than others’ data. They pointed out
that the reduction in TBC was attributed to the mismatch of
phonon frequencies across the interface and that the
introduction of a metal bonding layer is not naturally beneficial
for the overall TBC. The related studies are summarized in
Table 2.
5.4. GaN/AlN Interface. GaN/AlN interface has received

interest because AlN is commonly and intentionally formed
between GaN and substrates as an interlayer as seen in the
previous sections. Knowing the TBC of the GaN/AlN interface
is necessary to understand the role of the AlN interlayer
between GaN and substrates. Therefore, several theoretical
works have been conducted to simulate GaN/AlN interfacial
thermal transport, also partially because the interatomic
potential between GaN and AlN can be readily constructed
using the mixing rule, as summarized in Table 2. On the
experimental side, the only reported value is about 620 MW
m−2 K−1 for GaN/AlN superlattice with long periods.156

The first simulation work was done by Liang et al. in
2014.157,158 They developed a Stillinger−Weber (SW)
potential to calculate the TBC of the GaN/AlN interface via
NEMD and Green−Kubo equilibrium MD (EMD) simu-
lations. The NEMD and EMD gave comparable TBC values in
the range of 1150−1300 MW m−2 K−1, being much larger than
the experimental value. Bao et al.161 calculated the TBC of the
GaN/AlN interface using NEMD simulations with a Lennard-
Jones (LJ) potential and obtained 780 W m−1 K−1. Their
Monte Carlo simulations, fully based on the first-principles,
predict a TBC of about 870 MW m−2 K−1. Another first-
principle-based nonequilibrium Green’s function calculation in
the harmonic limit by Polanco et al.159 in 2019 obtained a low
value of 300 MW m−2 K−1. These results demonstrate large
gaps between different simulations and between simulations
and experiements.

Simulations also showed that the TBC of the GaN/AlN
interface can be largly tuned by interfacial engineering. Three
types of GaN/AlN interfacial morphologies, namely wurtzite,
rock-salt, and amorphous, were explored by Wang et al.160

using NEMD in 2021. Their results demonstrated that the
TBC can be significantly enhanced by recrystallizing the

amorphous AlN to rock-salt one, from 149 to 825 MW m−2

K−1. Sun et al.162 further investigated the role of misfit
dislocation structure via NEMD with three different
interatomic potentials, i.e., SW, mixing rule-based Tersoff,
and transferable Tersoff potentials. They demonstrated that
similar misfit dislocation networks and core structures were
produced by all three interatomic potentials. With those
defects, the TBC was shown to be 496, 2440, and 1933 MW
m−2 K−1, a reduction of 47.1%, 21.9%, and 40.1%, respectively,
compared to that without misfit dislocation. These results also
show a strong impact of the choice of interatomic potential on
the predicted TBCs.
5.5. GaN/BAs Interface. Boron arsenide (BAs) has

received great interest since 2013 when it was theoretically
predicted to have an ultrahigh thermal conductivity of 2200 W
m−1 K−1, comparable to diamond, by Lindsay et al. by first-
principles three-phonon scattering calculations. In 2017, Feng
et al. revised the prediction to ∼1400 W m−1 K−1 by including
four-phonon scattering. This value was supported by various
experiments in 2018. Since then, BAs has been recognized as
the second-highest thermal conductivity material in nature.
Naturally, it is of great interest to check whether BAs can be
used as thermal management substrates for WBGSs. However,
there is not much work done yet as this material is new and no
large crystals can be grown for now. The only work reported
on this system so far is done by Kang et al.101 in 2021, in which
a metamorphic heteroepitaxy method was applied to relax the
strain with a 2 nm amorphous Al2O3 layer introduced as an
adhesion layer, considering the crystal structures of BAs (zinc
blende cubic) and GaN (wurtzite) are different. A follow-up
oxygen plasma treatment was then used to activate interface
bonds, and the sample was annealed at 500 °C for 24 h in a
vacuum. The TBC of the GaN/BAs interface was measured by
TDTR as ∼250 MW m−2 K−1 without reporting measurement
and data fitting details, which is high compared to other TBCs
reported in this review. The authors also suggested that the
TBC of the GaN/BAs interface could be further enhanced
through optimization of the resistance contribution from the
oxide interlayer.
5.6. GaN/Oxides Interfaces. GaN/oxides interfaces have

been extensively studied since oxides are the commonly used
substrates due to their insulation nature. The related
experimental and computational studies are summarized in
Table 2. Sapphire (Al2O3) is one of the most extensively used
substrates due to its low cost. The first experimental GaN/
Al2O3 TBC was reported as 8.3 MW m−2 K−1 by Kuzmiḱ et al.
in 2007.149 However, they stated that the output signal was not
that sensitive to the TBC value, which resulted in a large
uncertainty. In 2014, Wang et al.163 obtained 10 MW m−2 K−1

by TDTR with MOCVD and by the 3ω method164. For GaN/
SiO2 interface,164 the value was about 15 MW m−2 K−1, higher
than that of GaN/Al2O3. Though the reported TBC values for
GaN/oxides are between 8−15 MW m−2 K−1, these data may
need re-examination because the oxides themselves have large
thermal resistance compared with the interfaces, which leads to
low sensitivity in the measurement. Different temperature
dependencies of these two interfaces were observed during the
measurement, i.e., the TBC of GaN/SiO2 increases dramati-
cally with increasing temperature, whereas that of GaN/Al2O3
decreases with increasing temperature. Some of the possible
reasons for such difference are the migration of oxygen across
the interface and phonon inelastic scattering.164 For all these
interfaces, the interfacial nanostructure is unclear, which
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highlights the importance of detailed materials character-
izations in future studies.

ZnO was recently studied as a substrate due to its good
lattice match with GaN. In 2018, Gaskins et al.165 grew ZnO
thin films heteroepitaxially on a Ga-polar GaN wafer by pulsed-
laser deposition, and a 10- to 12 nm defective region with
dislocations was identified. With TDTR, their measured TBC
is 490 MW m−2 K−1, which is much higher than that of Al2O3
or SiO2 interfaces, showing a bright prospect. They also
conducted DMM and AGF simulations and obtained 295 and
240 MW m−2 K−1, respectively, smaller than the measured
data. Two potential explanations were given. On the one hand,
the TBC may be intrinsic to the phonon modes in the ZnO
and not necessarily related to a “transmission” of modes
restricted by the vibrational states on the other side of the
interface. On the other hand, the presence of anharmonic
interactions at the interface, which is ignored in DMM and
AGF, may contribute to the TBC. The current study on GaN
and oxides interfaces are limited, and further work is needed to
substantially improve the TBC.
5.7. GaN/Metal Interfaces. GaN/metal interfaces are also

important since metals are required in electronics to form
Ohmic and Schottky contacts. Also, metals are commonly used
in the TDTR measurement as a transducer. The TBC values
are summarized in Table 2. Compared to GaN/nonmetal
interfaces, the thermal transport through GaN/metal interfaces
is more complicated since it may involve thermal transport
from the phonons of GaN to the electrons of metals.

In Table 2, we summarized the TBCs between GaN and Al,
Au, and Cr. The highest values achieved experimentally for
them are 400, 250, and 230 MW m−2 K−1, respectively. The
first available TBC of GaN/metals interfaces was reported by
Stevens et al.114 in 2005. They measured the TBC of GaN/Al
and GaN/Cr interfaces to be 190 and 230 MW m−2 K−1,
respectively. In 2014, Donovan et al.12 measured the TBCs of
GaN/Al, GaN/Au, and GaN/Ti/Au interfaces as 92, 55, and
250 MW m−2 K−1, respectively, which suggested that the
GaN/Ti/Au interface provided a better thermal management
solution in GaN devices compared to Al and pure Au because
Ti can enhance adhesion between GaN and Au. A clear
dependence of TBC on metallic contact and the operating

temperature was found and explained. In the same year, Wang
et al.163 and Cho et al.79 separately estimated the TBC of the
GaN/Al interface as 160 and 47−161 MW m−2 K−1,
respectively, during the measurement of the GaN/dielectric
interface by TDTR with Al as a transducer covering the GaN
thin film. Likewise, Freedman et al.166 measured the TBC of
GaN/Au and GaN/Cr interfaces as 180 MW m−2 K−1 during
the estimation of phonon MFP-dependent thermal conductiv-
ity for GaN with Au and Cr as the transducer by FDTR in
2013. In 2021, the TBC of the GaN/Al interface was also
investigated by Koh et al.81 using TDTR. As the Al film was in
situ deposited on the GaN film under an ultrahigh vacuum,
there were few defects at the interface. Thus, they reported to
date the highest value of TBC, which was about 400 MW m−2

K−1. This result is also in good alignment with their calculation
results by the nonequilibrium (NE) Landauer approach,
considering the elastic phonon scattering process, which
suggested that inelastic electron or phonon processes
contributed little to the TBC of GaN/Al.

On the simulation side, the results of the GaN/Al interfaces
are summarized in Table 2. In 2013, with the LJ potential,
Jones et al.167 obtained 211 MW m−2 K−1 by NEMD
simulations. As for the electron’s role in TBC, they suggested
that electron-mediated transport had little effect on thermal
resistance by coupling the MD to a two-temperature model
(i.e., electrons and phonons have difference temperatures).
Zhou et al.,168 otherwise, adopted the SW potential in NEMD
simulations and found that the TBC the GaN/Al interface with
the Al−Ga contact was 99 MW m−2 K−1, which was increased
to 102 MW m−2 K−1 if 3 nm long, 7 nm-wide interlaced teeth
were introduced at the interface. They also found that the Al-N
contact Al also resulted in higher TBC, i.e., 172 MW m−2 K−1.
These values are smaller than experimental data, which could
be because of the inaccuracy of the interatomic potential. Zhou
et al. highlighted that their objective was not to extract
quantitative data for specific materials, but rather to discover
the functional dependence of TBC on the type and quality of
the interfacial structures. Hence, the size of their simulation
domain was not large, and the effect of electrons was neglected.
5.8. Si/Diamond Interface. Si/diamond interface is also

important due to the high potential of using diamond as the

Table 3. Thermal Boundary Conductance of Si/Diamond and Si/SiC Interfaces
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substrate for the thermal management of Si devices.170,171

However, the TBC values obtained as of now are not high due
to the low quality of interfaces, as summarized in Table 3.
During the growth of Si/diamond heterostructures, diamond
seeds that are randomly dispersed on Si gradually grow and
merge as a film. As a result, the diamond near the interface is
nanocrystalline with small grain sizes. Sometimes the thermal
conductivity of synthetic diamonds near the Si/diamond
interface is even lower than Si at room temperature.94 The first
reported value is 30 MW m−2 K−1 by Goodson et al.,172 but no
details about the growth or measurement method are given.
Later, they reported a > 67 MW m−2 K−1 value for a CVD-
grown Si/diamond interface with a 10 nm amorphous
interlayer.96 Goyal et al.94 found the TBC varies between
50−100 MW m−2 K−1 with various synthetic diamond grain
sizes and film thicknesses by transient plane source (TPS).
Klokov et al.97 reported 18 MW m−2 K−1 by the laser pulse
method for the polycrystalline diamond film deposited on a
silicon substrate. In comparison, Mohr et al.98 extracted the
TBC between Si and nanocrystalline diamond (NCD) films to
be 50 MW m−2 K−1 using the 3ω method. For these samples,
the interface condition was not reported.

Cheng et al.76 improved the TBC of Si/diamond interfaces
significantly by graphoepitaxy in 2019. The 105 nm-long, 210
nm-wide interlaced teeth at the interface increase the TBC of
the flat Si/diamond interface from 64 MW m−2 K−1 to 80 MW
m−2 K−1, which is further increased to 105 MW m−2 K−1 by 47
nm-long, 69 nm-wide interlaced teeth, an indication of a strong
correlation between the shape and size of the interlaced teeth
and TBC. This is the highest Si/diamond TBC value reported
to date. They attributed the immense increase of TBC to the
enlarged contact area between Si and diamond. Since the
STEM image in this study reported a presence of an
amorphous layer between the crystalline Si and diamond

surfaces, the influence of the crystal phase on TBC was
investigated by NEMD simulations with a Tersoff potential.
The simulated results show that the amorphous layer should
play a negligible role in the TBC. However, the simulation
result (∼380 MW m−2 K−1) is much higher than the measured
value of 64 MW m−2 K−1 for the flat interface. The observed
discrepancy in the TBC values between the experimental and
simulation results was mainly attributed to the inaccuracy of
the available interatomic potentials and the size effect of the
simulation domains. Similar simulation research was carried
out by Khosravian et al.173 in 2013 with the Brenner potential
and reported TBCs of 238−482 MW m−2 K−1 with small
system sizes. Since these MD simulation results are
consistently higher than the available experimental data,
extensive simulation work that includes underlying exper-
imental interface type and quality might be needed to
quantitively validate experimental findings.
5.9. Si/SiC Interface. Si/SiC interface serves as a

competitive alternative to silicon/oxides interfaces because of
the improved thermal management in power conversion and
harsh environment applications. However, only a handful of
studies on TBC measurement are available to date as
illustrated in Table 3. Field et al. directly bonded wafer Si/
SiC by hydrophilic and hydrophobic methods.102 The
hydrophilic bonding results in a uniform 2.5 nm-thick
amorphous interlayer with a TBC of 80−110 MW m−2 K−1.
In contrast, the hydrophobic bonding results in an interlayer
with varying thicknesses of 0.2−2.5 nm and an improved TBC
of 100−250 MW m−2 K−1.63 Meanwhile, Cheng et al.174 grew
3C-SiC crystals on Si substrates by low-temperature CVD.
They reported a record high TBC among semiconductor
interfaces, which is above 600 MW m−2 K−1. This is achieved
mainly by growing high-quality interfaces at a low-temperature
condition, which reduces the strain in 3C-SiC caused by the

Table 4. Thermal Boundary Conductance between β-Ga2O3 and Other Materials
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mismatch of thermal expansion coefficient and then prevents
the formation of cracks at the interface. Regarding the
simulation efforts in this system, Xu et al.77 recently carried
out the first NEMD simulations with Tersoff potential and
obtained a TBC of 887 MW m−2 K−1. They demonstrated that
the TBC can be modulated broadly from 300 to 1000 MW
m−2 K−1 by confining nanopatterns with a thickness on the
order of nanometers, e.g., smaller than 30 nm. More work is
needed to bridge the TBC values gap between simulations and
experiments.
5.10. β-Ga2O3/SiC and β-Ga2O3/Diamond Interfaces.

The study of β-Ga2O3 interfaces is still at an early stage. The
first TBC was reported in 2019 by Cheng et al.,66 in which a
(100) oriented β-Ga2O3 nanomembrane was transferred on a
single crystal (100) CVD diamond substrate and measured a
TBC of 17 MW m−2 K−1 by TDTR. They attributed the low
TBC to the van der Waals bonding, which results in low
phonon transmission due to the weak adhesion. They further
deposited β-Ga2O3 onto ultraclean single crystal diamond
substrates by ALD and realized a covalently bonded inter-
face,60 which resulted in a significantly higher TBC of 179 MW
m−2 K−1. With different in situ pretreatments of the diamond
surfaces, they also found that the TBC of the Ga-rich and O-
rich β-Ga2O3/diamond interfaces is about 20% smaller than
that of the clean interface, indicating the significant impact of
interface chemistry on TBC. In 2020, Matsumae et al.103

directly bonded β-Ga2O3 with diamond by room-temperature
SAB followed by annealing at 250 °C in the ambient air. TEM
images of the β-Ga2O3/diamond bonding interface revealed an
atomically bonded, high-quality surface, without any nano-
voids, cracks, or intermediate layer. This study extensively
focused on the interface chemistry and structural properties,
and the TBC of the interface was not measured.

As for β-Ga2O3/SiC interfaces, Cheng et al.61 reported a
scalable wafer-scale strategy to integrate nanoscale mono-
crystalline β-Ga2O3 thin films on SiC substrates heteroge-
neously via ion-cutting and room-temperature SAB. Four
samples with different Al2O3 interlayer thicknesses and
different annealing conditions (corresponding to different a-
SiC thicknesses) were produced and measured by TDTR as
summarized in Table 4. The TBC was shown to be varying
from 65 to 100 MW m−2 K−1. The TBC value increases with
decreasing Al2O3 interlayer thickness but reduced slightly after
the thermal annealing.115 Using SAB with Si-containing Ar ion
beams, Xu et al.107 were able to achieve a β-Ga2O3/SiC
interface with only a 1.8 nm Ga2O3 + 2.2 nm amorphous SiC
interlayer. By an annealing process at 200 °C, the amorphous
Ga2O3 layer shrunk to ∼1.3 nm. However, they did not
measure the TBC. Later, Cheng et al.175 implemented the
same SAB procedure, but with a different annealing temper-
ature (800 °C), resulting in a high-quality β-Ga2O3/SiC
interface for which the measured TBC reached 150 MW m−2

K−1. More recently, Liang et al.176 reported a record high TBC
value of 244 MW m−2 K−1 for β-Ga2O3/SiC interfaces owing
to a superior-quality heterointerface. The interfacial region is
composed of a crystalline defective layer of 4.5 nm after the RT
SAB, which is reduced further to 1.5 nm after 1000 °C
annealing.

The only available simulation work on the TBC of β-Ga2O3/
SiC and β-Ga2O3/diamond interfaces was reported by Cheng
et al.66 in 2019. With the DMM model, they calculated the
TBC of β-Ga2O3/diamond to be 312 MW m−2 K−1, which was
much higher than their experimental results. They attributed

the difference to the interfacial bonding and real contact area at
the interface.
5.11. β-Ga2O3/Metal Interfaces. The TBCs of β-Ga2O3/

metals interfaces reported in the literature are summarized in
Table 4. Aller et al.177 deposited Au on top of bare as well as
Cr, Ti, and Ni-covered β-Ga2O3 using the wedge deposition
method. The TBCs of Au/β-Ga2O3, Au/Cr/β-Ga2O3, Au/Ti/
β-Ga2O3, and Au/Ni/ β-Ga2O3 interfaces were measured by
FDTR. They found the inverse-U-shaped correlation between
the TBC and layer thickness where TBC first increases with
increasing interlayer metal thickness before reaching saturation
and then decreases. Among these samples, the interface with
2.5 nm Cr as interlayer has the highest TBC value, which
reaches 530 MW m−2 K−1. All three samples with metal
interlayers showed much higher TBC than the bare Au/β-
Ga2O3 interface. They pointed out that the oxide layers were
formed during the deposition process, without which the TBC
could be even higher. Shi et al.63 conducted both theoretical
and experimental studies for a range of different β-Ga2O3/
metals interfaces, i.e., β-Ga2O3/Au, β-Ga2O3/Ti, β-Ga2O3/Ni,
β-Ga2O3/Al, and β-Ga2O3/Cr. They found that the TBC
values of those interfaces at room temperature vary from 90 to
150 MW m−2 K−1. For the ohmic contact metals, β-Ga2O3/Cr
interfaces demonstrate the highest TBC of 149 MW m−2 K−1,
while for Schottky contact metals, β-Ga2O3/Ni interfaces show
the highest TBC of 126 MW m−2 K−1. They also concluded
that the experimentally measured TBC values from TDTR are
typically lower than the DMM results. According to their
analysis, the metal cutoff frequency should play the main role
in the TBC followed by other factors, like chemical reactions
and defects. Since there are only two relevant studies
published, further studies are desired.

6. DISCUSSION ON INTRINSIC TBCS
Based on Section 5, we have summarized the state-of-the-art
TBC values of various interfaces achieved experimentally in
Figure 7. Regardless of the different interfacial structures, the
highest TBC values achieved for various structures can be

Figure 7. Experimental TBC improvement of (U)WBGS hetero-
structures in the past two decades. The state-of-the-art TBC achieved
for each heterostructure is circled. The available atomic resolution
images for the state-of-the-art works are shown.
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ordered from high to low as follows: GaN/AlN > Si/SiC >
Ga2O3/Au ≈ GaN/ZnO > GaN/Al > GaN/SiC ≈ GaN/BAs
≈ Ga2O3/SiC > Ga2O3/diamond > GaN/diamond > Si/
diamond. The order can be understood by comparing the
phonon spectra mismatches between WBGSs and UWBGSs as
well as the substrates and contacts, as shown in Figure 8. We

distinguish the acoustic from optical phonon frequency ranges
using different colors. Since acoustic phonons dominate the
elastic transmission as well as thermal conductivity of bulk
materials, they are considered the dominant heat carriers for
interfacial thermal transport, despite that optical phonons are
found to carry considerable heat across interfaces via inelastic
transmission in MD simulations. As seen in Figure 8, diamond
has the widest acoustic phonon spectra, being more than two
times those of all the other materials, leading to a high phonon
mismatch. This explains why diamond-related interfaces
exhibit the lowest TBCs. GaN has a good match with AlN
and ZnO and thus has high TBCs. Si and SiC have a good
acoustic frequency match and thus have a high TBC.
Interestingly, some are counterintuitive such as Ga2O3/Au
interface, which does not have a good phonon match but
shows a high TBC. This could be a measurement error/
uncertainty or complex inelastic effect. From Figure 8, it can
also be guessed that certain materials might be appropriate
intermediate layers to bridge the acoustic spectra of other
interfaces. For example, SiC can bridge Si/diamond; AlN and
Si3N4 can bridge GaN/diamond; Al2O3 can bridge Ga2O3/SiC;
SiC, Si, AlN, Si3N4 can bridge Ga2O3/diamond; no bridge is
needed for Al2O3 and Al. In a word, Figure 8 could serve as
guidance for future research efforts.

7. CONCLUSIONS AND OUTLOOK
The past decades have witnessed the rapid improvement of
thermal boundary conductance across WBGS and UWBGS
heterostructures, and in the coming decade, more mature
experimental and reliable simulation works will be emerging to
further push the TBC values. A foremost and natural question
to answer is: What are the theoretical upper limits of the TBCs
for these interfaces if they exist? This is an ambitious question
since there are numerous interlayer materials and geometries
that can be introduced between two materials to facilitate heat
transfer. To answer this question, an accurate theoretical or
simulation method is required. DMM and AMM can give

theoretical elastic limits, but they do not consider inelastic
phonon transmission and cannot be viewed as the theoretical
upper limit. Future research that constructs machine learning
interatomic potential with a DFT accuracy for interfaces will be
valuable, and it will open an avenue for accurate TBC
predictions and interfacial structure optimization. Machine
learning molecular dynamics (MLMD) is expected to be the
focus area in the next decade since it has both the advantage of
classical MD (high efficiency) and ab initio MD (high
accuracy).74 A follow-up question is: How to realize the
theoretical upper limits? Current experiments have only tried a
finite number of interlayer materials, thicknesses, and geo-
metries. However, a comprehensive understanding of the
theoretical limit requires a large number of experimental
studies aided by supporting theoretical simulations. Since none
of the experiments in the literature has realized an atomically
flat and clean interface for the heterostructures reviewed in this
article, a natural question is: What are the TBCs for atomically
flat and clean heterostructures? Although they can construct
atomically flat and clean interfaces, current simulation methods
cannot predict credible results, as discussed in Section 4.
Therefore, the experimental effort that can grow an atomically
flat and clean interface will be of great scientific significance.
Simulation methods that can accurately predict TBCs are
urgently needed. More direct comparisons between experi-
ments and simulations for the heterostructures reviewed in this
article are needed. It is worth answering whether an interlayer
changes the temperature-dependent properties (notably at
higher temperatures), which can help understand how the
inelastic scattering can be promoted within an interlayer at
increased temperature. We expect with the advancement of the
experimental bonding method and the accurate atomistic
simulations, the TBCs of WBGS and UWBGS heterostructures
will experience another leap in the coming decades. Based on
different systems, we listed possible future research directions
as follows.
7.1. GaN/Diamond. (1) Since TBC increases with

decreasing interlayer thickness generally, a natural question is
whether the TBC can be further improved if the thickness of
the interlayer can be reduced below 5 nm; for example, 1 nm.
In addition, will no interlayer give the upper limit of TBC? On
the one hand, the works that reported noninterlayer only
showed TBC values of about 4.5−21 MW m−2 K−1,52,84,85 as
shown in Table 2. As pointed out by the authors, this might be
because there are voids at the interface for the CVD-grown
nanocrystalline diamond on GaN without interfacial protective
layers. On the other hand, it is a big challenge to form direct
bonding between GaN and diamond interfaces due to the large
lattice and thermal expansion mismatch. So far, only Liang et
al. reported one method to achieve that experimentally, but
they do not measure any thermal properties, such as TBC of
the samples. Normally, an interlayer is necessary for protecting
GaN in order to create a relatively good interface. Nonetheless,
the role of the 5 nm interlayer might also provide a phonon
vibrational density of state bridge between GaN and diamond.
Future studies providing the direct integration methods
between these two materials and revealing the mechanisms
of TBC enhancement by interlayers with certain thicknesses
are of interest. (2) It is found that the same thickness of AlN
gives lower TBC than what SiNx gives, despite the higher
thermal conductivity of AlN. What are the reasons behind
that? A theoretical simulation or model is needed to provide a
theoretical explanation of the observed experimental finds

Figure 8. Phonon frequency ranges of various materials. Green and
orange bars represent acoustic and optical phonons, respectively.
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while guiding future experimental efforts for interlayer material
selection. (3) The room-temperature SAB bonded GaN/
diamond shows a TBC of 92 MW m−2 K−1, which contains
amorphous layers of diamond and silicon. An annealing
process that can convert amorphous interlayer to crystalline is
expected to be a promising approach to improve the TBC
further. (4) Since interlaced teeth structures are effective in
improving TBCs, can we construct interlaced teeth between
GaN and diamond? To have the benefit of strengthened
chemical bonding, can we introduce interlaced teeth on the
interlayer material, i.e., introducing interlaced teeth between
GaN and SiNx as well as between SiNx and diamond? (5)
Current simulations for GaN/diamond interface are still based
on empirical interatomic potential mixed from bulk materials
potentials. MLMD that can describe the interfacial properties
is urgently needed.
7.2. GaN/SiC. All MD simulations demonstrated that the

TBC of GaN/SiC interfaces can be promoted via nanoscale
interfacial treatment. However, two potential gaps between
simulations and experiments should be noted. First, the SiC
studied in simulations is generally 6H-SiC instead of 4H-SiC,
which is different from the experimental study. Second, the
simulation results of TBC are significantly larger than the
experimental data. This is probably because the interatomic
potentials used in the simulations are not accurate and are not
calibrated by experiments or first-principles density functional
theory (DFT) calculations. Another reason might be that
various defects at interfaces due to the lattice mismatch in real
samples can result in TBC reduction, which is not taken into
account in the simulation works. A more accurate simulation
method remains to be developed to model the TBC for
interfaces more realistically, which can be inspired by a much
recent review.178 A question to answer from both experiments
and simulations is: Is it possible to exceed the state-of-the-art
value, 230 MW m−2 K−1, if small (∼nm) interlaced teeth or
roughness are introduced?
7.3. GaN/Si. To date, no simulation was found for GaN/Si,

and high-fidelity MLMD simulations are urgently needed. On
the experimental side, only one interlayer material (i.e., AlN)
has been tried with a large thickness (∼40 nm). Other
interlayer material options (e.g., SiNx) and thinner thicknesses
(1−5 nm) are yet to be explored.
7.4. GaN/AlN. NEMD is widely adopted to simulate the

TBC of the GaN/AlN interface using various interatomic
potentials. However, different interatomic potentials led to
quite different TBC values, and there is only one experimental
report available for validation.156 More accurate first-
principles-based simulations and experimental measurements,
with or without the presence of interlayers, are needed. Since
GaN and AlN have a similar structure, we expect many more
interfacial structural designs can be realized, compared to
GaN/diamond interfaces.
7.5. GaN/BAs. As a new material, BAs has not been widely

studied as a substrate. To date, only one experimental work has
been reported,101 which bonded GaN and BAs by using plasma
bonding, forming an amorphous Al2O3 interlayer. Future
directions include answering the following questions: What is
the TBC of bare and clean GaN/BAs interface? What if the
amorphous Al2O3 is annealed to be crystalline? Will the SAB
method give higher TBCs? Will higher thermal conductivity
interlayer materials (e.g., AlN, SiC, BN) give higher TBCs?
7.6. GaN/Metals. Limited consideration was given to the

roles of electrons on TBC of GaN/metals interfaces. Although

the AGF and Landauer’s approach that only ignores electron−
phonon interaction has successfully predicted the TBC of the
clean and sharp Al/Al2O3 interface grown by Cheng et al.,179

the conclusion regarding the minimal or negligible role of
electron−phonon interaction in modulating TBC across the
GaN/metals interface warrants more in-depth and realistic
simulations and high-quality experiments studies. Moreover,
the match between the experimental results and theoretically
predicated data seen in Al/Al2O3 may not be seen in GaN/
metal interfaces, and AGF calculations for these interfaces are
needed to indirectly examine whether electron−phonon
coupling is important. Work by Fisher’s group180 on metal/
metal-silicide materials that use both experimental and
computational methods indicates that (for some interfaces)
the electron−phonon contribution may be up to 50%. Since
GaN and metals have a vibrational mismatch, the inelastic
transmission may need to be included in AGF. The recently
developed AGF method that incorporates inelastic phonon
transmission could be an excellent candidate.129 Alternatively,
MLMD could be a more effective method to calculate the
phonon TBCs (without phonon−electron coupling across the
interface).
7.7. Ga2O3 Interfaces. The study of Ga2O3 related

interfaces is still in its infancy stage. There are many
experimental and theoretical efforts needed. As shown in
Table 4, several ultraclean interfaces with very thin interlayers
have been grown, but only two published experimental data on
interfaces and surfaces are available now. These interfaces are
expected to have very large TBCs and are expected to be
revealed in the near future. Many substrate materials and
bonding parameters can be tried and tuned to increase the
TBCs. In the theoretical aspect, except for the two papers
mentioned in Section 5.8, there is no further MD simulation
reported yet, and tremendous efforts are needed to develop
interatomic potentials and guide experimental designs.
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Table 2. Thermal Boundary Conductance between GaN and Other Materialsa

aGreened and greyed boxes are for experimental and simulation data, respectively. *These values may have a large uncertainty.

Table 3. Thermal Boundary Conductance of Si/Diamond and Si/SiC Interfaces

Table 4. Thermal Boundary Conductance between β-Ga2O3 and Other Materials
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