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Accurate prediction of thermal conductivity of Al2O3 at ultrahigh temperatures
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Many complex crystals show a flat or even increasing lattice thermal conductivity at high temperatures,
which deviates from the traditional 1/T decay trend given by conventional phonon theory. In this paper, we
predict the thermal conductivity of Al2O3 that matches with experimental data from room temperature to
near melting point (2200 K). The lattice thermal conductivity is found to be composed of contributions of
phonon, diffuson, and radiation. Phonon particle thermal conductivity decays approximately as ∼T −1.14 after
considering four-phonon (4ph) scattering as well as finite-temperature corrections to the lattice constant and
harmonic and anharmonic force constants (AFCs). Diffuson (interband tunneling) thermal conductivity increases
roughly as ∼T 0.43. Radiation thermal conductivity increases as ∼T 2.51, being slightly smaller than ∼T 3 due to
the increase of phonon linewidth with temperature, which increases photon extinction coefficient and reduces
photon mean free path (MFP). At room temperature, phonon, diffuson, and radiation contribute ∼99, 1, and
0%, respectively. At 2200 K, their contributions change to 61, 20, and 19%, respectively. 4ph scattering is
important at ultrahigh temperatures, decreasing the phonon thermal conductivity by a maximum of 24%. The
finite-temperature softening effects of the harmonic and AFCs increase the phonon thermal conductivity by a
maximum of 36% at ultrahigh temperatures. We also verify that Green-Kubo molecular dynamics can capture
both the particle and wave nature of phonons, like the Wigner formalism. At ultrahigh temperatures, the photon
MFP is found to be on the order of 100 nm, which should be considered for experimental measurement of thin
films. In this paper, we aim to enhance the understanding of lattice thermal conductivity in complex crystals at
ultrahigh temperatures, potentially spurring further exploration of materials suitable for such extreme conditions.
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I. INTRODUCTION

Thermal conductivity of complex crystals at high tem-
peratures is critical for many applications, such as thermal
barrier coatings [1,2], refractory materials [3,4], crucibles, and
high-temperature thermal insulation [5,6] However, current
state-of-the-art theoretical prediction based on the phonon-gas
model (PGM) [7–9] could not explain their intriguing ther-
mal conductivity (κ). At intermediate temperatures, κ decays
with temperature (T), being consistent with typical crystal
behavior. However, at high temperatures, κ either increases
or remains independent of temperature, displaying a peculiar
and anomalous glasslike behavior. While the former behavior
can be explained using PGM based on the Boltzmann trans-
port equation (BTE), which primarily involves three-phonon
(3ph) or four-phonon (4ph) scattering processes, the latter
phenomenon remains a puzzle, presenting an unanswered
question.

In this paper, we take Al2O3 as an example to investigate
the flattening or increasing trend of thermal conductivity at
high temperatures for the following reasons. (1) Al2O3 has
excellent mechanical strength, high-temperature thermal and
chemical stability [10–12], large band gap [13], high dielectric
constant [14], high melting point [15], and is widely used in
many high-temperature engineering applications. (2) It does
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not have an electronic contribution to heat transfer, leaving
the theoretical lattice thermal conductivity readily comparable
with experimental data. (3) It can be grown to a large-sized
single crystal with high purity, so grain boundary and defect
scattering can be neglected. (4) Extensive experimental data
[16–25] are available to validate our study.

In this paper, we investigate several possible improve-
ments to the current state-of-the-art κ prediction to explain
the flattening or increasing trend of thermal conductivity in
complex crystals at ultrahigh temperatures. One improvement
is the temperature correction on lattice structure and phonon-
phonon scattering. The current phonon theory relies on the
ground-state lattice structure and force constant, where 3ph
∝ phonon population (n) ∝ T and 4ph ∝ n2 ∝ T 2 [26,27],
resulting in phonon thermal conductivity (κph) decay with
power law T −1 and T −2, respectively, for 3ph and 4ph scat-
tering. However, phonon renormalization at high temperatures
due to lattice expansion and temperature dependence of har-
monic force constant changes 3ph and 4ph scattering phase
space [28], which may lead to an increase in κph. Recently,
it has been reported that the temperature dependence of the
anharmonic force constant (AFC) reduces the scattering prob-
ability (or scattering cross-section) [28,29], which increases
κph. These make the thermal conductivity flatter at higher
temperatures compared with ground-state calculations.

The second improvement could be the incorporation of
the diffuson thermal conductivity (κdif or κc) along with κph.
In PGM and BTE, the primary heat carriers are propagating
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FIG. 1. Computation workflow of the study.

phonons (particlelike phonons), which account only for the
diagonal terms of the velocity operator. This is a good approx-
imation for simple crystals [30], where the phonon branches
are well separated, i.e., interband spacings are much larger
than the phonon linewidths. However, this approximation fails
in the complex crystals and disordered regime [31], where
phonon bands are not well separated, and many phonon modes
might overlap with each other. In this scenario, phonons show
wavelike transport properties, i.e., they can tunnel from one
mode into another and conduct heat. Recently, Simoncelli
et al. [32,33] introduced the Wigner transport equation which
encompasses particlelike and wavelike conduction mecha-
nisms, providing a unified approach to the heat-transport
phenomena in solids, including simple crystals (where par-
ticlelike propagation dominates), glasses (where wavelike
tunneling or diffusons dominates), and all intermediate cases
(complex crystals where both particlelike and wavelike con-
duction mechanisms coexist). The significant κdif is reported
for many complex crystals [34–37] and used to explain the
flattening of κ at higher temperatures.

The temperature effect on both κph and κdif could also
be studied using molecular dynamics (MD) simulations. In
principle, MD should capture all orders of phonon-phonon
interaction as well as diffuson, due to its ability to simulate
the intricate behavior of individual atoms, thereby captur-
ing all the underlying microscopic mechanisms governing
lattice heat transfer. MD, while powerful, is limited by the
accuracy of the interatomic potential functions they rely on.
Classical potentials, based on empirical models, often involve
approximations and force field parameters, leading to inherent
inaccuracies in capturing the complex quantum mechanical
behaviors of atoms and molecules. Machine-learning inter-
atomic potentials (MLIPs), on the other hand, have very high
accuracy, comparable with that of density functional theory
(DFT) calculations. In this paper, we train the moment tensor
potential (MTP) [38–40] from ab initio MD (AIMD) snap-
shots and use it to run Green-Kubo MD (GKMD) [41,42] to
calculate thermal conductivity (κGKMD).

The third improvement could be the incorporation of radia-
tion thermal conduction (κrad) to overall thermal conductivity.

Like phonons, photons also propagate inside and through
the crystal and transport the heat, which contributes to ap-
parent thermal conductivity. Radiation contribution has been
hypothesized as a primary reason for the increase in ther-
mal conductivity at ultrahigh temperatures in early literature
[18,21,24,43–46]. However, the radiation thermal conductiv-
ity has not been calculated rigorously from first principles.
Here, we calculate the radiative properties using the Lorentz
oscillator model [47,48] and estimate the radiation thermal
conductivity based on the Rosseland model.

In this paper, we present the thermal transport of Al2O3

from room temperature to the melting point (2200 K) by
incorporating the temperature-dependent force constants in
κph calculation and considering κdif and κrad. Here, κph and
κdif contributions are calculated using Wigner formalism and
GKMD separately. The remaining sections of the paper are
structured as follows. In Sec. II, we present the computations
details and methodology used in the study. Sections III and IV
present the main results and discussions, respectively. Finally,
Sec. V presents the conclusions.

II. METHODOLOGY

A. Computational workflow

Figure 1 shows the computational workflow of the study.
First, the structure is relaxed by using VASP [49,50], us-
ing generalized gradient approximation [51] method and
the Perdew-Burke-Ernzerhof functional revised for solids
(PBEsol) [52]. The plane-energy cutoff used in the calcu-
lations is 500 eV, and the energy and force convergence
thresholds are 1 × 10−8 eV and 1 × 10−7 eV Å−1, respec-
tively. Al2O3 belongs to the trigonal lattice structure system
(space group R3̄c), with a rhombohedral primitive unit cell
containing 10 atoms. The relaxed lattice parameters are a =
5.139 Å and α = 55.35◦, which closely resemble the exper-
imental values [53,54] of a = 5.128 Å and α = 55.28◦. In
DFT calculations, supercells of 3 × 3 × 3 (270 atoms) are
used with a k-point grid of 4 × 4 × 4. Other parameters are
kept constant as that of relaxation.

075201-2



ACCURATE PREDICTION OF THERMAL CONDUCTIVITY … PHYSICAL REVIEW B 109, 075201 (2024)

For the ground-state calculations, harmonic or second-
order force constants (2FCs) are extracted using PHONOPY

[55] considering the fourth-nearest neighbors. The AFCs, in-
cluding third-order force constants (3FCs) and fourth-order
force constancs (4FCs), are calculated using the THIRDORDER

and FOURTHORDER packages built inside ShengBTE [56],
considering the fourth and second nearest atoms, respec-
tively. For the finite-temperature calculations, the structure
is expanded using the thermal expansion coefficient (TEC).
The AIMD is computed, and snapshots are recorded, from
which the MTP-based [39,40,57] MLIP is trained. GKMD
is performed by using the MLIP-LAMMPS package [39,58] to
calculate κGKMD. The temperature-dependent harmonic and
AFCs are extracted using the temperature-dependent effective
potential (TDEP) method [59,60]. Using the force constants,
κph and κdif are calculated by solving Wigner’s formalism
[32,33] under ShengBTE. Radiative properties are calculated
using the Lorentz oscillator model, from which κrad is calcu-
lated using the Rooseland model. Finally, the total thermal
conductivity (κtot or κ) is calculated by summing up κph, κdif ,
and κrad as well as κGKMD and κrad separately. The details of
each step are explained below.

B. TEC

The linear TEC is calculated using quasiharmonic approx-
imation (QHA) with the following formalism [61]:

αL = − kB

3NqVcB

∑
q, j

γq, j ·
( x

2

)2
·
[
1 − coth2

( x

2

)]
.

Here, (q, j) stands for a phonon mode with wave vector q
and dispersion branch j. Also, Nq is the number of phonon q
points, Vc is the volume of a primitive cell of Al2O3, kB is the
Boltzmann constant, and B = −V dP

dV is the bulk modulus. The
summation is done over all the 3Nqnb phonon modes, where
nb is the number of basis atoms in a primitive cell. Here, x is
short for x = h̄ωq, j/kBT , and γq, j = − V

ωq, j

∂ωq, j

∂V is the mode-
dependent Grüneisen parameter. In this paper, an 18 × 18 ×
18 q-mesh is used in the TEC calculations.

The bulk modulus at the ground state is calculated using
VASP by the finite difference method using B = −V dP

dV , which
gives B = 249 GPa. It matches well with the experimental
data of 248.7 GPa [62] and 257 GPa [17]. The Grüneisen
parameters are obtained by two methods. One is using the
finite difference method, based on the definition of γq, j =
− V

ωq, j

∂ωq, j

∂V , implemented in PHONOPY [55]. The other method
is to use the third-order AFC to predict γλ as implemented
in ShengBTE [56]. As shown in Fig. 2, the predicted TEC
using the ground-state bulk modulus (blue-dashed curve with
Grüneisen parameter from PHONOPY and black-dashed curves
with Grüneisen parameter from ShengBTE) match experi-
mental data at low to medium temperatures but deviates at
ultrahigh temperatures. This deviation has been reported to be
corrected by using the temperature-dependent bulk modulus
[28]. With the temperature-dependent bulk modulus [17], the
predicted TEC agrees with experimental data even at ultrahigh
temperatures [17,64,65]. QHA generally tends to overesti-
mate thermal expansivity at high temperatures, which has
been attributed to anharmonicity at high temperatures [66,67].

FIG. 2. Linear thermal expansion coefficient (TEC) of Al2O3 as
a function of temperature. The theoretical TEC (lines) are calculated
by quasiharmonic approximation (QHA) using the Grüneisen param-
eter and bulk modulus obtained from different ways. The ground
state (GS) bulk modulus is calculated by density functional theory
(DFT), and temperature-dependent (TD) bulk modulus is taken from
Ref. [17]. The DFT predicted data by Tohei et al. [63] and different
experimental data [17,64,65] are included for comparison.

This deviation could be corrected by the phonon quasiparticle
approach [68,69] or accurate calculation of mode Grüneisen
parameters using temperature-dependent force constants [28].
TEC calculated using temperature-dependent force constants
is shown in the dash-dot green line in Fig. 2, which shows that
this correction is small in the case of Al2O3.

C. MLIP

We employ a MTP-based [39,40,57] MLIP to characterize
the temperature-dependent potential surface of Al2O3. The
accuracy and effectiveness of this method have been demon-
strated in previous studies [29,70]. A potential is trained for
each temperature of this paper, i.e., at 500, 800, 1000, 1200,
1500, 1600, 1700, 1800, 1900, 2000, 2100, and 2200 K. The
temperature interval is kept small at higher temperatures, as
the focus of this paper is to study the flattening trend of κ at
higher temperatures. The training database for each potential
is prepared by AIMD with NVT ensemble for 500 steps with
time step of 5 fs. The lattice structure for particular temper-
atures is expanded using TEC. A supercell of 3 × 3 × 3
primitive cell containing 270 atoms is used in the simulation
domain. Four independent AIMDs with randomly displaced
initial atomic positions are performed at each temperature to
better sample the potential energy surface. Energies, forces,
and stresses are recorded together with corresponding atomic
configurations to construct the training and testing database.
The database is separated randomly maintaining 75% (1500
snapshots) for training and 25% (500 snapshots) for testing.
The initial MTP of level 22 is selected to train the potential
based on the accuracy and computational demand. The se-
lected initial potential is trained for 1000 iteration steps with
the minimum and maximum atomic interaction cutoffs of 1.2
and 5.5 Å, respectively.
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D. GKMD

Once the MTP with a small error is developed, GKMD
is performed by using the MLIP-LAMMPS package [39,58].
GKMD calculates the lattice thermal conductivity by inte-
grating the heat current autocorrelation function based on the
Green-Kubo formula [41,42]:

κGKMD = 1

3kBT 2V

∫ ∞

0
〈 �J (0) · ⇀

J (t )〉dt, (1)

where kB is the Boltzmann constant, V is volume of total sim-

ulation domain, T is temperature,
⇀

J (t ) is the heat current, and
the angular bracket represents an autocorrelation. In LAMMPS,
the heat current vector is calculated by the energy and forces
of the system, which is obtained from the MTP.

In this paper, we employ a 7 × 4 × 3 supercell of the
conventional cell, containing 5042 atoms. The size effect is
studied. Periodic boundary conditions are implemented in all
three dimensions. The time step of GKMD is set to 1 fs.
First, an NVT ensemble is run for 200 000 steps (0.2 ns) to
fully stabilize the temperature of the system. Then an NVE
ensemble is run for 200 000 steps (0.2 ns) to fully stabilize
the system. Finally, another NVE ensemble is run for 800 000
steps with a correlation time of 200 ps, during which the heat
current correlation is recorded. To mitigate the noise and in-
trinsic statistical error of GKMD, we conduct 16 independent
runs with different initial velocities for each temperature. The
ratio between the total running time and the correlation time
is maintained >300, which has been reported to be sufficient
[71]. Since the temperatures in this paper are relatively high,

the difference between a classical statistics and a quantum
statistics is neglected.

E. Temperature correction to force constants

The temperature-dependent harmonic and AFCs are ex-
tracted using the TDEP method [59,60] at 500, 1000, 1500,
and 2000 K. The TDEP method extracts effective force con-
stants at a certain temperature by fitting the potential energy
of a series of atomic trajectory images at that temperature
to the second, third, and fourth orders. Here, 1000 randomly
displaced configurations are generated at each temperature
to sample the potential surface. The forces, stress, and en-
ergies of these configurations are obtained from MTP at
that temperature. The effect of the temperature is factored
in by a thermal expansion, a temperature-dependent MTP
trained from AIMD simulations at different temperatures, and
a temperature-dependent displacement of atoms in the gener-
ated supercells.

F. Phonon and diffuson thermal conductivity
by Wigner formalism

Using the force constants, the thermal conductivity is cal-
culated by solving the Wigner’s formalism [32,33]:

καβ = κ
αβ

ph + κ
αβ

dif , (2)

κ
αβ

ph = h̄2

kBT 2 VcNq

Nq∑
q

3nb∑
j

vα
q, jv

β
q, jω

2
q, j nq, j (nq, j + 1)τq, j,

(3)

κ
αβ

dif = h̄2

kBT 2V Nq

Nq∑
q

3n,3n∑
j 	= j′

vα
q, j j′v

β

q, j′ j

ωq, j + ωq, j′

2

ωq, jnq, j (nq, j + 1) + ωq, j′nq, j′ (nq, j′ + 1)

4(ωq, j′ − ωq, j )2 + (
τ−1

q, j + τ−1
q, j′

)2

(
τ−1

q, j + τ−1
q, j′

)
, (4)

τ−1
q, j = τ−1

3ph + τ−1
4ph + τ−1

ph−iso . (5)

Here, α and β are cartesian directions; κ
αβ

ph is the phonon par-
ticle thermal conductivity (or Peierls thermal conductivity);
κ

αβ

dif is the diffuson thermal conductivity; j and j′ are phonon
branches; ω is the angular frequency; v is the group velocity;
and τ−1 is the phonon scattering rates, including 3ph, 4ph, and
phonon-isotope scatterings. The convergence of ShengBTE at
various q-mesh densities is tested. Specifically, the 3ph calcu-
lation converges at a q-mesh density of 18 × 18 × 18, and the
3ph + 4ph calculation converges at 6 × 6 × 6. The iterative
solution to 3ph and phonon-isotope scattering is included, as
implemented in ShengBTE. Here, 4ph scattering is taken at
the relaxation time approximation level. The formalism of 3ph
and 4ph scattering rates can be found in Ref. [27].

G. Radiation thermal conductivity

Like phonons, photons can also transport in materials.
Analogous to phonon creation and annihilation (i.e., phonon
scattering events), which limit the phonon mean free path
(MFP), photon absorption and re-emission also limit the

photon MFP inside a material. When the size of a material
is much larger than the phonon MFP, phonons transport diffu-
sively, and the phonon thermal conductivity is approximately
proportional to the phonon MFP. Similarly, when the size of
a material is much larger than its photon MFP, the material
is optically thick, and its radiation contribution to thermal
conductivity is proportional to photon MFP. Based on the
Rosseland model, the radiation contribution to thermal con-
ductivity (κrad) of an optically thick material [18,72,73] is

κrad = 16n2(T )σSBT 3

3β(T )
, (6)

where n(T ) and β(T ) are the temperature-dependent refrac-
tive index and extinction coefficient, respectively; β(T ) gives
the attenuation of the electromagnetic waves inside the mate-
rial and is the inverse of photon MFP; and n(T ) and β(T ) are
given by

n(T ) =
∫ ∞

0
n(λ, T )

∂Ebλ

∂Eb
dλ, (7)

1

β(T )
=

∫ ∞

0

1

α(λ, T )

∂Ebλ

∂Eb
dλ. (8)
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FIG. 3. Comparison of (a) forces and (b) energies obtained from machine-learned interatomic potential with density functional theory
(DFT) calculations.

Here, σSB is the Stefan-Boltzmann constant. The spectral
refractive index n(λ, T ) and spectral absorption coefficient
α(λ, T ) can be calculated from the dielectric function ε(λ, T )
as

n2(λ, T ) = 1

2
[|ε(ω, T )| + εre(ω, T )], (9)

α(λ, T ) = 4πk

λ
= 2

√
2π

λ
[|ε(ω, T )| − εre(ω, T )]1/2, (10)

where εre is the real part of ε, and k(λ, T ) is the spectral
extinction coefficient given by

k(λ, T ) = 1√
2

[|ε(ω, T )| − εre(ω, T )]1/2. (11)

The dielectric function ε(ω, T ) can be predicted using the
four-parameter Lorentz oscillator model [47,48] as

ε(ω, T ) = ε(∞)
∏

j

ω2
j,LO − ω2 + i� j,LOω

ω2
j,TO − ω2 + i� j,TOω

, (12)

where � is the same as the phonon scattering rate, i.e.,
� = τ−1; ω is the phonon or photon angular frequency, i.e.,
ω = 2π f ; j runs through all the infrared active transverse
optical (TO) and longitudinal optical (LO) branches; i is the
imaginary unit number; and ε(∞) is the dielectric function at
the high-frequency limit which is calculated from the density
functional perturbation theory [74]. The calculated values are
3.21 and 3.23 for ordinary and extraordinary rays, which
match well with the experimental values of 3.2 and 3.1 [75].
The details of the calculation of ε(ω, T ) are like that of
Ref. [76].

III. RESULTS

A. MLIP and GKMD

The MTP is trained by using the stress, forces, and en-
ergies obtained from AIMD calculations. The training and
testing errors are <5% for each potential trained at various
temperatures. To further verify the accuracy of the trained
potentials, we extracted the forces and energies of the test
dataset using the MTP. Note that this test dataset is not used

to train the potential and is selected randomly. The extracted
forces and energy from the MTP are plotted against the forces
and energies obtained from DFT calculations. As seen in
Fig. 3, all the points lie along the diagonal with low root
mean square error of 0.0426 eV/Å and 0.0664 eV for forces
and energies, respectively. This shows that the MTP could
accurately reproduce the forces and energies of the configura-
tions and represent the actual potential surface with accuracy
comparable with DFT calculation.

Using the MTP, GKMD is conducted to calculate the lat-
tice thermal conductivity (κGKMD), as shown in Fig. 4. The
average thermal conductivity is obtained by integrating the
autocorrelated heat flux with correlation time. As seen in the
inset of Fig. 4, the average thermal conductivity converges,
suggesting that the parameters used in our calculations are
appropriate. The κGKMD shows a flattening and slight increas-
ing trend at ultrahigh temperatures, which agrees reasonably
well with experimental data. This further demonstrates the

FIG. 4. Thermal conductivity of Al2O3 at various tempera-
tures obtained by Green-Kubo molecular dynamics (GKMD) using
machine-learning interatomic potentials (MLIPs). The experimental
data (open dots) [16–25] are shown for comparison. Inset shows sev-
eral independent runs and their average as a function of correlation
time for 2200 K.
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FIG. 5. (a) Phonon, diffuson, and radiation thermal conductivities in Al2O3 as a function of temperature. The power laws are fitted using
the calculated data. (b) The relative contributions from phonon, diffuson, and radiation.

high accuracy of the trained MTP. However, the experimental
data show much increasing thermal conductivity at ultrahigh
temperatures, which could not be captured by the GKMD.

B. Phonon, diffuson, and radiation thermal conductivity

In the following, we track the changes of κ at low tem-
perature (300 K), high temperature (1200 K), and ultrahigh
temperature (2200 K) when we gradually increase the calcula-
tion comprehensivity and include the contributions of phonon
(κph), diffuson (κdif ), and radiation (κrad). First, we calcu-
late the basic 3ph thermal conductivity using ground-state
force constants (GSFCs), shown in the blue-dashed line in
Fig. 5(a), which follows κ ∼ T −1 law. The κph is 28.59, 6.26,
and 3.4 W m−1 K−1 at 300, 1200, and 2200 K, respectively.

The 3ph rates at 300 and 2000 K are shown in Fig. 6(a),
which increases with temperature. Second, we include the
4ph scattering using GSFC, shown in dash-dotted blue line,
which decreases κph by 8, 18, and 24% to 26.30, 5.09, and
2.48 W m−1 K−1 at the three temperatures, respectively. The
effect of 4ph rates is not that strong. It is primarily due to the
fact that the crowd phonon branches [Fig. 6(b)] in Al2O3 allow
the energy and momentum selection rules of 3ph scattering
to be easily satisfied. With strong 3ph scattering, the relative
importance of 4ph scattering is naturally small. Third, we re-
place the GSFC by the temperature-dependent force constant
(TDFC), which is found to increase κph by 8, 13, and 36% to
28.43, 5.73, and 3.37 W m−1 K−1 at the three temperatures,
respectively. This increase is due to the combined effect of
temperature correction to the lattice constant and interatomic

FIG. 6. (a) Three-phonon (3ph) and four-phonon (4ph) scattering rates at 300 and 2000 K, respectively. The black line serves as a guideline
for the comparison of phonon lifetime with its period. (b) Temperature dependence of phonon dispersion [calculated at 300 and 2000 K
using the force constant obtained from temperature-dependent effective potential (TDEP)]. (c) and (d) The temperature softening of third and
fourth orders of interatomic force constants (IFCs). (e) and (f) Comparison of scattering phase space using ground state force constants and
temperature-dependent force constants for 3ph and 4ph. (g) and (h) Decrease in 3ph rates and 4ph rates at 2000 K due to temperature correction
to force constants.
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FIG. 7. The variation of thermal conductivity prediction of
Al2O3 using various approaches. Experimental thermal conductivity
data from Refs. [16–25] are also shown for comparison.

force constants. At elevated temperatures, phonon dispersion
gets softened due to lattice expansion and harmonic force
constant softening [Fig. 6(b)]. This results in an increase in
3ph and 4ph scattering phase space, as shown in Figs. 6(e) and
6(f), due to the change in the energy and momentum conserva-
tion selection rule. At the same time, finite-temperature AFC
softening decreases the scattering cross-section, as shown in
Figs. 6(c) and 6(d), which results in the decrease in 3ph and
4ph rates, as shown in Figs. 6(g) and 6(h). In fact, TD 2FC
tends to increase the scattering rates by increasing the scatter-
ing phase space. It is due to the more pronounced reduction in
TD 3FC and TD 4FC that leads to the decrease in scattering
rates. Overall, incorporating TDFC increases κph and flattens
κph curve at high temperatures.

One interesting phenomenon seen in Fig. 5(a) is that κph

using GSFC and 3ph rates (dashed blue line) and κph using
TDFC and 3ph + 4ph rates (solid-blue line) agree with each
other with reasonable accuracy at high temperatures. This is
due to the competing effect of 4ph scattering and TDFC in
thermal conductivity, considering 4ph rates decrease κph while
TDFC increases it. In the case of Al2O3, these two opposite
effects are found to cancel each other. This also introduces the
possibility of an error-cancellation effect on other complex
materials, where the effect of TDFC and 4ph rates cancel
each other, and κph computed using GSFC and 3ph scattering
matches with experimental data.

The diffuson thermal conductivity (κdif ) increases with
temperature at low and intermediate temperatures and be-
comes flat at ultrahigh temperatures, as shown in Fig. 5(a).
Using GSFC, κdif is ∼0.44 W m−1 K−1 at 300 K which in-
creases to 0.95 and 1.28 W m−1 K−1 at 1200 and 2200 K,
respectively. At high temperatures, the phonon linewidth in-
creases, which increases the phonon tunneling probability
and increases κdif . Using TDFC, κdif decreases by 13, 7,
and 16% to 0.38, 0.89, and 1.08 at 300, 1200, and 2200 K,
respectively. Adding κdif to κph makes κ flatter at high tem-
peratures, as shown in the dashed orange line in Fig. 7. Here,
κph + κdif matches experimental data at intermediate to high
temperatures but could not explain the increase in thermal
conductivity at ultrahigh temperatures.

Also, κph + κdif obtained from the Wigner formalism
matches the GKMD results throughout the temperatures. This
alignment underscores the capability of both GKMD and the
Wigner formalism to effectively capture κph and κdif . Further,
the good agreement between these two different approaches
supports the Wigner formalism as well as the accuracy and
consistency of our calculations.

The radiation thermal conductivity (κrad) is negligibly
small at room temperature, but it increases with temperature
and reaches 0.22 and 1.05 Wm−1 K−1 at 1200 and 2200 K,
respectively. The partial contributions of κph, κdif , and κrad are
shown in Fig. 5(b). As seen, κph decays with temperature, κdif

increases and saturates with temperature, while κrad increases
rapidly with temperature. At room temperature, κdif and κrad

are almost negligible, resulting in κ ≈ κph i.e., κph contributes
to almost 100% of κ . At a high temperature of 1200 K,
κdif increases significantly and contributes 13%, and the κrad

contribution is 3.27%. At an ultrahigh temperature of 2200 K,
κrad becomes significant as well. At this temperature, κph, κdif ,
and κrad contribute 61.2, 19.7, and 19.1%, respectively.

When κph, κdif , and κrad are summed up together, κ reaches
28.81, 6.85, and 5.51 W m−1 K−1 at 300, 1200, and 2200 K,
respectively. This is shown in the solid-magenta line in Fig. 7,
which matches well with the experimental data. This shows
that the total thermal transport comes from the contribution
of κph, κdif , and κrad. The red points in the graph show κ

obtained by summing up κGKMD and κrad, which also matches
with experimental data.

The scaling laws of κph, κdif , and κrad with respect to
temperature are shown in Fig. 5. For Al2O3, we find that κph

decays approximately as ∼T −1.14 after considering 4ph scat-
tering as well as finite-temperature corrections to the lattice
constant, harmonic, and AFCs. This is slightly different from
κph ∼T −1.19 obtained from using ground-state force constants.
Here, κdif increases roughly as ∼T 0.43. Also, κrad increases as
∼T 2.51, being slightly smaller than ∼T 3 due to the increase
of phonon linewidth with temperature, which increases the
photon extinction coefficient and reduces the photon MFP.
These scaling laws are of interest when interpreting or predict-
ing the thermal conductivity trends of other materials as well.
Details of power-law fittings can be found in the Supplemental
Material [77].

IV. DISCUSSION

A. Phonon lifetime and MFP

Based on the diffuson theory, the phonons are characterized
as either normal phonons or diffusonlike phonons based on
Ioffe-Regel limit criteria [78,79]. The first criterion compares
the lifetime (τ ) of phonons with their period (P), stating that
phonon modes with their τ smaller than P cannot be treated
as particles anymore and should be treated as diffusons. In
this condition, phonon modes exhibit wavelike nature, which
allows them to tunnel between close eigenstates and transport
heat diffusively. Figure 6(a) shows the 3ph and 4ph rates,
along with P−1 (shown in the black-solid line). As seen,
both 3ph and 4ph rates, even at the higher temperature of
2000 K, are smaller than P−1 (equivalently τ > P), showing
that all the phonon modes are normal phonons. Similarly, the
second criterion states that phonon modes with MFP smaller
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FIG. 8. (a) Mean free path (MFP) of the phonon modes compared with minimum atomic spacing (b) cumulative phonon thermal
conductivity as a function of phonon MFP.

than the minimum interatomic distance (La) become diffusons
or diffusonlike phonons. As seen in Fig. 8(a), some phonon
modes in the optical region (with frequency > 6 THz) have
MFP < La at 300 K and are diffusonlike phonons. The num-
ber of diffusonlike phonons increases with temperature, and
nearly one-third of the optical phonons becomes diffusonlike
phonons at 2000 K. This explains the increase in diffuson
thermal conductivity with temperature as more phonon modes
become diffusonlike phonons at higher temperatures. Note
that, in the Wigner formalism, all phonons are both particles
and diffusons simultaneously at all temperatures. All phonons
contribute to heat conduction through dual channels—particle
and diffuson. As temperature increases, the diffuson nature of
more phonons weighs more than their particle nature.

Figure 8(b) shows the cumulative κph with respect to MFP.
At 300K, 80% of κph comes from phonons with MFP <50 nm.
This value decreases to 5 nm as the temperature increases to
2000 K. As the experimental samples have grain size on the
order of microns, κ reported in experimental studies are not
suffered by grain boundary scattering.

B. Radiation heat transfer

To investigate the reason behind the radiation heat transfer,
we calculate the spectral radiative properties of Al2O3 using
the Lorentz oscillator model, which uses the frequency and
damping of infrared (IR) active phonon modes at the � point.
Based on symmetry analysis [80–82], the phonon modes on

FIG. 9. Radiative thermal properties of Al2O3 at room temperature calculated in this paper from first principles (curves) compared with
experimental data (symbols). (a) and (b) Refractive index. (c) and (d) Extinction coefficient. (e) Reflectance. (f) Photon penetration depth.
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FIG. 10. Effect of nonanalytical correction (NAC) on (a) phonon thermal conductivity, (b) group velocities of phonon, and (c) and (d)
phonon band dispersion.

Al2O3 are 2A1g + 2A1u + 3A2g + 2A2u + 4Eu + 5Eg. Among
these modes, the A2u (extraordinary ray with the electric field
vector parallel to the z axis) and Eu (ordinary ray with the
electric field vector perpendicular to the z axis) species are IR-
active modes, A1g and Eg are Raman active modes, and A2g and
A1u are spectroscopically inactive. The details on determining
TO and LO branch indexes of IR active modes are discussed
in Ref. [76,83].

The radiative properties evaluated at room temperature are
shown in Fig. 9. The spectral refractive index (n) and extinc-
tion coefficient (k) are shown in Figs. 9(a)–9(d), respectively.
The experimental data from Querry [84] are also shown for
comparison, which shows a close agreement. The reflectance
is calculated from the dielectric function or refractive index as

R =
∣∣∣∣
√

ε − 1√
ε + 1

∣∣∣∣
2

= (1 − n)2 + k2

(1 + n)2 + k2
. (13)

The spectral reflectance is shown in Fig. 9(e), which
matches well with the experimental data [48,75].

The extinction coefficient measures the attenuation of ra-
diative waves inside the medium and is inversely correlated
to the photon MFP. It depends on the imaginary part of the
dielectric function and is sensitive to the damping factor or
phonon linewidth. Thus, the temperature-dependent phonon
linewidth is used to accurately calculate the extinction co-
efficient at higher temperatures. Note that the value for the
extinction coefficient varies with the size of the material and

was reported from 0.02 for bulk material [84] to 0.00008 for
the thin film of 500 nm [85] at 1 µm wavelength. This results
in significantly different κrad on bulk materials and thin film.
The present calculation is based on the bulk material and is
compared with the experimental data reported for bulk mate-
rial by Querry [84]. From the spectral extinction coefficient,
we can see that Al2O3 is nearly transparent in the near-IR
range, with a penetration depth of ∼110 µm for ordinary rays
and ∼60 µm for extraordinary rays in this range [Fig. 9(f)].
In the case of thin film, the photon might pass through the
material instead of interacting with it.

The present calculation is based on the Rosseland model,
which assumes the materials to be optically thick, where
the photon gets absorbed in the medium and re-emitted and
reabsorbed. In this scenario, the medium behaves as a partic-
ipating medium and leads to the radiation thermal transport,
as discussed in the previous papers [18,21,24,43–46]. The
dominant radiation in the high-temperature region lies in the
near-IR range, as per Wein’s law (λdomT = 2898 μm K), for
which the penetration depth is on the order of ∼100 µm.
Since the experimental sample are in millimeters or higher
[18,19,75,84], the optically thick medium approximation used
in our calculations is justified.

C. Effect of nonanalytical correction

As shown in Fig. 10(a), the consideration of the nonanalyt-
ical correction (NAC) decreases κph moderately and increases
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κdif slightly. The comparison is made for the calculation made
with the ground-state force constant. The NAC considera-
tion decreases κph from 30.58, 5.95, and 2.90 W m−1 K−1

to 26.30, 5.09, and 2.48 W m−1 K−1 at the temperatures of
300, 1200, and 2200 K, respectively. Whereas κdif changes
from 0.48, 0.90, and 1.24 W m−1 K−1 to 0.44, 0.95, and
1.28 W m−1 K−1, respectively. Overall, κ is overestimated if
the NAC is not considered. This overestimation is due to
the higher group velocities without the NAC [Fig. 10(b)].
The phonon scattering rates are not affected significantly. The
change of group velocities is understandable since the NAC
causes TO-LO branch splitting, which flattens some branches
in phonon dispersion, as shown in Figs. 10(c) and 10(d), and
then reduces the group velocities.

V. CONCLUSIONS

In conclusion, in this paper, we present the accurate first-
principles prediction of the thermal conductivity of Al2O3

from room temperature to near the melting point (2200 K).
The lattice thermal conductivity is found to be composed
of contributions of phonon, diffuson, and radiation. The fol-
lowing conclusions are drawn. (1) Including all-temperature
effects on phonon, diffuson, and radiation can reproduce the
flattening and increasing trend of lattice thermal conductivity
at high to ultrahigh temperatures. (2) Phonon particle ther-
mal conductivity decays approximately as ∼T −1.14. Diffuson
thermal conductivity increases roughly as ∼T 0.43. Radiation
thermal conductivity increases as ∼T 2.51. (3) At room tem-
perature, phonon, diffuson, and radiation contribute 98.7, 1.3,
and 0%, respectively. (4) At 2200 K, they contribute 61.2,
19.7, and 19.1%, respectively. (5) 4ph scattering is important
at ultrahigh temperature, decreasing the phonon thermal con-
ductivity by a maximum of 24%. (6) The finite-temperature
softening effects of harmonic and AFCs can increase the

phonon thermal conductivity by a maximum of 36% at ultra-
high temperatures. (7) The thermal conductivity from GKMD
agrees reasonably well with the Wigner formalism, indicating
that GKMD captures both the particle and wave nature of
phonons. (8) The dominant phonon MFP of Al2O3 is 50 and
5 nm at 300 and 2200 K, respectively, indicating that it does
not suffer from size effects for most experimental samples.
(9) The photon penetration depth is ∼100 nm, indicating that
the ballistic effect of photon transport needs to be considered
in the measurement of thermal conductivity of Al2O3 thin
films when the film thickness is on the order of 100 nm at
high temperatures. We hope our findings have deepened the
understanding of lattice thermal conductivity at ultrahigh tem-
peratures for complex crystals and will lead to more materials
exploration for ultrahigh temperature applications.

Source data are provided along with this paper. All other
data that support the plots within this paper and the codes used
in this paper are available from the corresponding authors on
reasonable request.
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