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Ruddlesden-Popper chalcogenides push the
limit of mechanical stiffness and glass-like
thermal conductivity in single crystals

Md Shafkat Bin Hoque 1,17, Eric R. Hoglund 2,3,17, Boyang Zhao4,17,
De-Liang Bao 5, Hao Zhou 6, Sandip Thakur 7, Eric Osei-Agyemang8,
Khalid Hattar 9,10, Ethan A. Scott 1,10, Mythili Surendran 4, John A. Tomko 1,
John T. Gaskins11, Kiumars Aryana 1, Sara Makarem 2, Adie Alwen4,
Andrea M. Hodge4, Ganesh Balasubramanian12, Ashutosh Giri 7, Tianli Feng6,
Jordan A. Hachtel 3, Jayakanth Ravichandran 4,13,14 ,
Sokrates T. Pantelides 5,15 & Patrick E. Hopkins 1,2,16

Insulating materials featuring ultralow thermal conductivity for diverse
applications also require robust mechanical properties. Conventional think-
ing, however, which correlates strong bonding with high atomic-vibration-
mediatedheat conduction, led todiverseweakly bondedmaterials that feature
ultralow thermal conductivity and low elastic moduli. One must, therefore,
search for strongly-bonded single crystals in which heat transport is impeded
by other means. Here, we report intrinsic, glass-like, ultralow thermal con-
ductivity and ultrahigh elastic-modulus/thermal-conductivity ratio in single-
crystalline Ruddlesden-Popper Ban+1ZrnS3n+1, n = 2, 3, which are derivatives of
BaZrS3. Their key features are strong anharmonicity and intra-unit-cell rock-
salt blocks. The latter produce strongly bonded intrinsic superlattices,
impeding heat conduction by broadband reduction of phonon velocities and
mean free paths and concomitant strong phonon localization. The present
study initiates a paradigm of “mechanically stiff phonon glasses”.

Designing materials with ultralow thermal conductivity (κ) without
reducing their density and degrading their mechanical properties
typically evades century-old theories onmicroscopic heat conduction.
In non-metallic crystals, the primary modes of thermal transport are

lattice vibrations, namely phonons. Dating back to theories originally
pioneered by Peierls, Leibfreid and Schlomann, Einstein, and Debye,
the thermal transport of atomic vibrations is directly related to the
interatomic bond strengths1–9. Hence, “ultralow" thermal conductivity
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in solids often comes at the cost of “weak” interatomic-bond strength
and “soft” elastic modulus (E), limiting their mechanical
performance10–14. In recent years, a family of halide perovskite-
structure crystalline solids has been found to feature ultralow ther-
mal conductivities, of order 0.15–0.3 Wm−1 K−1, but their weak van der
Waals (vdW) bonding leads to very low values of elastic and shear
moduli15–20. Breaking this Pareto-normality in the design of crystals to
create ultrahigh E/κ materials must, therefore, involve different stra-
tegies than those traditionally proposed to limit phonon transport.
Such decoupling would have major implications for both inorganic
and organic materials in many technological applications21. As mate-
rials such as thermal barrier coatings and thermoelectrics are sub-
jected to large thermal gradients and intensive cycling, low thermal
conductivity and high elastic modulus are often desired for better
efficiency and crack propagation resistance22–28. Thermally insulating
and mechanically strong materials are also coveted in metal contact
adjacents to prevent failure from electromigration29–31.

To overcome the barriers of achieving ultrahigh E/κmaterials and
create new directions for achieving single crystals with ultralow ther-
mal conductivity, one seeks to inhibit the propagation of phonons in a
“hard” lattice. In perfect crystals, phonons travel with intrinsic group
velocities and are inhibited by phonon-phonon scattering caused by
anharmonic effects. Historically, chalcogenides (S, Se, and Te) have
been investigated for ultralow thermal conductivity because of strong
anharmonicity (e.g., PbSe, Bi2Te3, SnSe)

32–36. However, many of these
materials tend to crystallize in layered structures with vdW interac-
tions, leading to poor mechanical properties across the layers due to
ease of shearing. Thus, covalently-bonded layered chalcogenides
present a potential pathway to low thermal conductivity and high
elastic modulus in the direction across the layers. We, therefore, pre-
sent Ruddlesden-Popper (RP) sulfides37,38 as potential candidates for
this scenario. Unlike some RP halide perovskites that are bonded by
weak vdW forces,16,19 the RP sulfides hold both the promise of high
anharmonicity and strong bonding in a layered, superlattice-like
structure with intrinsic interfaces.

Herein, we report on the ultralow thermal conductivity of RP
phases Ban+1ZrnS3n+1, n = 2 and 3 of barium zirconium sulfide
(BaZrS3)

38,39 single crystals, enabled by strong anharmonicity and a
large fraction of localized and low-velocity vibrational modes
throughout the entire vibrational spectrum, thus achieving broadband
attenuation of thermal transport. We reveal the origin of the ultralow
thermal conductivities in these RP derivatives of the chalcogenide
perovskite BaZrS3 using a combination of experiments and first-prin-
ciples- andmachine learning-driven computational approaches.Unlike
previously studied vdW layered crystals, including the RP halides,16,19

the strongBa-S andZr-S chalcogenidebonds across the rock-salt layers
and the (BaZrS3)n layers bring elastic-moduli values of the RP phases
nearly an order of magnitude higher than other ultralow-thermal-
conductivity inorganic crystals. As a result, the RP phases of these
single crystals exhibit record-setting values of E/κ for any single-
crystalline material discovered to date, while maintaining glass-like,
ultralow thermal conductivities. Such a useful combination of thermal
and mechanical properties makes the materials highly desirable in the
fields of thermal barrier coatings and thermoelectric materials40.

Results and discussion
To investigate the impact of sub-unit cell structures on thermal con-
ductivity, we consider perovskite BaZrS3 and two RP phases, Ba3Zr2S7
and Ba4Zr3S10, whose crystal structures are investigated by X-ray dif-
fraction in Supporting Information section S1. The perovskite shown in
Fig. 1a consists of tilted ZrS6 octahedra (Fig. 1c) and BaS12 polyhedra
(Fig. 1d). The RP-phase Ba3Zr2S7 shown in Fig. 1b contains two per-
ovskite sections (red brackets) that are separated by rock-salt packed
layers (Fig. 1e). Ba4Zr3S10 differs fromBa3Zr2S7 by adding onemoreBaS
and ZrS2 atomic layer to each perovskite section. Fig. 1f shows an iDPC

image of BaZrS3 and Fig. 1g, h show the layered periodic stacking of
perovskite layers in the two RP phases with the enlarged regions of
interest, emphasizing one of two rock-salt layers that are present in a
single unit cell. The elemental maps generated by electron-energy-loss
spectroscopy (EELS) and the corresponding atomic-number-contrast
(Z-contrast) image shown in Fig. 1(i-l) show thehighdegreeof chemical
ordering in each sublattice and the change in local symmetry at the
rock-salt layers.

To understand the bonding in the RP phases, density functional
theory (DFT) calculations were performed on Ba3Zr2S7 to calculate the
valence electron density, as shown in Fig. 1m, n. A line profile along the
dashed white line in Fig. 1m is shown in Fig. 1o for a more quantitative
evaluation. The valence electron density within the rock-salt regions is
non-zero and comparable to those inside the perovskite blocks, which
suggests similar intra- and inter-perovskite-block bonding strength. In
other words, the bonding in the rock-salt regions, namely across the
gaps highlighted in Fig. 1(b), is not of the weak, vdW type. The overall
strong bonding is also reflected in the calculated elasticmoduli, which
have comparable values along the cross-plane and in-plane directions.
The elastic-moduli values are three to four times higher than those
observed in other ultralow-thermal-conductivity halide perovskites,
such as, Cs3Bi2I6Cl3,

17 Cs3Bi2I9,
18 the RP-phase Cs2PbI2Cl2

16 and several
metal halide perovskites (see Supplemental Table S3). The presence of
strong intra- and inter-perovskite-block bonding strength in the sulfide
RP phases described here mitigate the role of bond strength in the
observed ultralow thermal conductivity.

To understand phonon transport through the structures, we
measured the cross-plane (c-axis) thermal conductivity using time-
domain thermoreflectance (TDTR) from 100 to 400 K, as shown in Fig.
2a. The thermal conductivities exhibit several unusual features for
single-crystalline materials. First, the thermal conductivity of crystal-
line BaZrS3 increases from 100 to 250 K, then remains relatively tem-
perature independent. Such trend is observed in amorphousmaterials
and disordered crystals, but it is rare in single crystals7. The weak or
negligible temperature dependence cannot be explained by prior first-
principles three-phonon scattering calculations41 (the purple dashed
curve in Fig. 2a). In contrast, our DFT-based machine-learning-
interatomic-potential (MLIP)-driven molecular-dynamics (MD) simu-
lation results (orange open dots in Fig. 2a) show good overall agree-
ment with experimentally measured data, with only small differences
above 200 K. This agreement demonstrates the accuracy of MLIP-MD
(or MLMD) simulations, which implicitly capture all the atomic-
vibration contributions to thermal conductivity, including the effects
of three-phonon scattering, four-phonon scattering, finite-
temperature phonon renormalization, temperature correction to
force constant, and diffuson contributions42,43. This agreement also
confirms that the glass-like thermal conductivity trend of single-
crystalline BaZrS3 is not from extrinsic defects, but rathermechanisms
intrinsic to the crystal. However, the exact mechanism behind the
temperature trend in the thermal conductivity of single-crystalline
BaZrS3 remains an open question. Supporting Figure S11 shows that
perovskites have been reported to exhibit both glass- and crystalline-
like thermal conductivity trends. Isolating the mechanisms that
underlie the thermal conductivities observed in this class of materials
is beyond the scopeof the present study, aswe focus on the RP phases.

The RP phases Ba3Zr2S7 and Ba4Zr3S10 possess ultralow thermal
conductivities, i.e., 0.45 ± 0.07 and 0.42 ± 0.05Wm−1 K−1, respectively,
over a relatively large temperature range. These values are ~3.5 times
lower than those of single-crystalline BaZrS3, in agreement with the
Agne et al.’s diffuson limit,6 and lower than Cahill et al.’s glass limit4.
These two limits are two of the most commonly used theoretical
models to predict the lowest possible thermal conductivity of a crys-
talline material. Additionally, the thermal conductivities of Ba3Zr2S7
(green diamonds) and Ba4Zr3S10 (blue triangles) show glass-like tem-
perature trends, comparable to that of amorphous BaZrS3 (black
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circles). TheMLMD thermal conductivity simulations of Ba3Zr2S7 show
quantitative agreement with the experimental data. The cross-plane
thermal conductivities of the sulfide RP phases are even lower than
those of vdW layered materials, except when thin film samples and
interlayer rotations are involved10,44. On the other hand, the sulfide RP
phases feature far superior mechanical properties of all vdW layered
materials.

Defects in materials have also been known to lead to ultralow
thermal conductivity and glass-like temperature trends7. X-ray dif-
fraction data mentioned earlier (shown in Supporting Information
section S1), combined with the agreement of the simulations of the
thermal conductivity with the experimental data, prove the high
quality of the single crystals used in this study, which precludes the
attribution of the low thermal conductivity to disorder and defects. To
study how the introduction of defects would change thermal con-
ductivity, we irradiate the BaZrS3 and Ba4Zr3S10 crystals with high
energy gold ions. The measured cross-plane thermal conductivities of
theheavily ion-irradiated crystals as a functionof iondoseare shown in
Fig. 2b. The thermal conductivity of BaZrS3 exhibits a sigmoidal
reduction, typically characteristic of irradiated crystalline
materials45,46. At low doses, irradiation introduces low concentrations

of clustered point defects and vacancies. The overall crystal structure
remains relatively unchanged, whereby the thermal conductivity is
nearly constant. At high doses, point-defect concentrations increase
and damaged regions overlap, which gradually decreases the thermal
conductivity to that of an amorphous solid.

Compared to BaZrS3, a completely different thermal conductivity
trend is observed vs. ion dose in the RP phases; the thermal con-
ductivity of the Ba4Zr3S10 crystals remains nearly constant regardless
of gold ion dose. TEMmicrographs show that the layering of Ba4Zr3S10
crystals remains uninterrupted throughout the range of doses,
although high doses can introduce amorphous pockets (see Sup-
porting Information). In vdW layeredmaterialswith interlayer rotation,
ion irradiation can lead to increased thermal conductivity due to
increases in interatomic bonding10. However, due to the already strong
bonding of the RP phases, no such trend is observed in the present
study. The resistance of the RP crystals to irradiation damage makes
them a highly suitable thermal barrier coating in deep space applica-
tions in radiation environments.

To gain insight into the role of anisotropy in ultralow thermal
conductivity of the RP phases, wemeasure the thermal conductivity of
Ba3Zr2S7 along the in-plane direction (perpendicular to c-axis) at room

Fig. 1 | Structure of perovskite BaZrS3 and Ruddlesden-Popper Ban+1ZrnS3n+1.
Ball-and-stick model of (a) Pnma perovskite BaZrS3 and (b) I4mmm Ruddlesden-
Popper Ba3Zr2S7 showing grayZrS6 octahedra and green BaS bonds. Redmarkers in
(b) indicate the perovskite blocks of the RP phase separated by the rock-salt blocks.
Blue dotted lines between BaS atomic planes indicate themidplane of the rock-salt
blocks. Ball-and-stick model of a (c) Zr octahedra, (d) undistorted Ba polyhedral,
and (e) rock-salt building block resulting from layering in Ba3Zr2S7. Integrated
differential phase contrast images of the (f) BaZrS3, (g) Ba3Zr2S7, (h) Ba4Zr3S10
crystals. Enlarged regions from the cyan annotations are shown below each image.

In the enlargements, two perovskite unit cells are annotated with Ba (green), Zr
(gray) and S (yellow) circles. (i) Z-contrast imageand (j) BaZr composite image from
a STEM-EELS spectrum image. Intensity maps of (k) Ba-M45, (l) Zr-M23 background-
subtracted edges.m, n Section views along (200) and (110) of the valence electron
density of the RP-phase Ba3Zr2S7 calculated by DFT, respectively. Red marks and
blue dashed lines help to correlate atomic structure to that of panel (b). o A line
profile of the valence electron density along the white dashed line in (m). Blue bars
illustrate the rock-salt-block regions.
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temperature as shown in Fig. 2c. The in-plane thermal conductivity is
1.06 ± 0.14 W m−1 K−1 which is ~2.5 times higher than the cross-plane
thermal conductivity (0.45 ± 0.07 W m−1 K−1). It is noteworthy that the
MLMD-simulated in-plane and cross-plane thermal conductivities are
1.02 ± 0.17 and 0.53 ± 0.02 W m−1 K−1, respectively, showing excellent
quantitative agreement with the experimental anisotropy. The agree-
ment combined with the X-ray diffraction data rule out the impact of
defects on measured thermal conductivities. The major structural
difference between the in-plane and cross-plane directions is the per-
iodic rock-salt and perovskite layers, relative to continuous layers in-
plane. This result suggests that, despite the strong bonding, the rock-
salt layers are causing the ultralow and anisotropic thermal con-
ductivity in the RP phases.

To understand how the introduction of rock-salt layering leads to
the ultralow thermal conductivities in the RP phases compared to that
of crystalline BaZrS3, we consider three factors that may contribute to
ultralow thermal conductivity: 1) anharmonic scattering, 2) decreased
phonon group velocities (vg), and 3) phonon localization within unit
cells47.

To assess the role of anharmonic scattering, we calculated the
spectral energy density (SED) of BaZrS3 and Ba3Zr2S7 based onMLMD,
as shown in Fig. 3a, b. Compared to a typical semiconductor (e.g.,

silicon, gallium nitride), the SEDs of both BaZrS3 and Ba3Zr2S7 show
much more blurred and broadened linewidths, indicating strong
anharmonicity and large phonon scattering rates47,48. These features
could be a critical reason for the ultralow thermal conductivity. The
large overlapping of branches due to the anharmonic broadening also
indicates that the interband tunneling (i.e., diffusons) should be sig-
nificant, based on the Wigner formalism49,50. This feature could be a
reason for the glass-like thermal conductivity exhibited by the
experimental data. Recent calculations using the Wigner formalism
show that diffuson contributes 30% to thermal conductivity of BaZrS3.
We expect the diffuson contribution to beeven larger in Ba3Zr2S7 since
the broadening of SED is more significant.

Group velocity (vg) is another important parameter to understand
the diffusivity of vibrationalmodes in amaterial13. The group velocities
along the cross-plane direction (vg,z) of BaZrS3 and Ba3Zr2S7 are com-
pared in Fig. 3c. Despite the presence of strong intra- and inter-
perovskite-block bonding strength in Ba3Zr2S7, its cross-plane phonon
modes have smaller group velocities at nearly all frequencies with
relatively flat dispersions. Though weak cross-plane bonding (e.g., in
van der Waals layered materials) results in relatively flat bands, the
reverse is not true as strongly bonded materials often have flat bands.
For example, optical phonon bands are often relatively flat in strongly
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Fig. 2 | Thermal conductivities - experimental and simulated. a TDTR-measured
cross-plane thermal conductivity of BaZrS3 and its RP derivatives. For comparison,
we also include the three-phonon and MLMD predicted thermal conductivity of
BaZrS3 and RP phases. The three-phonon prediction is adopted from Osei-
Agyemang et al.41 The minimum limit and diffuson limit refer to Cahill et al.4 and
Agne et al.'s6 theoreticalmodels. bThermal conductivity distribution of BaZrS3 and

RP phases as a function of heavy ion-irradiation doses. The thermal conductivity of
the crystalline BaZrS3 is lower compared to panel (a) due to the presence of nano-
domains (see Supporting Information for details). c Anisotropic thermal con-
ductivity of Ba3Zr2S7 measured by TDTR at room temperature. The uncertainty/
error bars of the measurements are discussed in the Supporting Information.
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bonded materials, e.g., GaAs. Another strongly bonded material, β-
Ga2O3, has a relatively large number of flat bands and thus low thermal
conductivity. The origin of relatively flat bands in strongly bonded
materials is not always clear.

In Fig. 3d, we plot the cumulative number of phonon modes as a
function of group velocity to quantify the number of modes having
ultralow group velocities. We find that 80% of phonon modes of
Ba3Zr2S7 have a vg,z lower than the sound speed of air. In comparison,
the x component shows a larger group velocity, which is similar to that
of BaZrS3. This feature would indicate that the in-plane thermal con-
ductivity of Ba3Zr2S7 is similar to that of BaZrS3 but the cross-plane
thermal conductivity would be much lower, which is consistent with
both the experimental observations and the simulations. Thus, the
ultralow phonon velocities, induced by the presence of periodic
building blocks in unit cells, is another key contributing factor to the
ultralow thermal conductivities.

The third possible factor contributing to ultralow thermal con-
ductivity is phonon localization. We note that the ultralow group
velocities of Fig. 3c, d do not inherently imply phonon localization. For
example, phonons in relatively flat optical bands in GaAs have small
group velocities, but are not localized anywhere because the primitive
unit cell has only two atoms. To study the spatial localization of pho-
non waves within a unit cell of BaZrS3 and Ba3Zr2S7, we calculate the

participation ratio (PR) of the vibrational modes. Localized vibrational
modes are usually defined as having a participation ratio lower than
0.151. As shown in Fig. 3(e,f), the participation ratio of Ba3Zr2S7 is sig-
nificantly lower than that of BaZrS3 across all frequencies. It is note-
worthy that some low-frequencymodes (<2 THz) in the RP phase have
a participation ratio that is smaller than 0.1, which is comparable to the
localization expected for locons in amorphousmaterials51,52. This result
provides evidence that the presence of rock-salt building block layers
in the RP phases causes a significant number of vibrational modes to
become highly localized18.

To further show the localization of the vibrational modes, we
estimate the average mean free path of phonons in Ba3Zr2S7 in Sup-
porting FigureS12. Assuming thediffuson thermal conductivity is zero,
the average mean free path of phonons is estimated as 1 nm, to match
with experimental thermal conductivity. Since diffuson contribution is
nonzero, the actual mean free path of phonons should be smaller than
1 nm, the inter-gap thickness. These considerations indicate that the
phonons are localized inside the rock-salt layers of Ba3Zr2S7 by the
gaps, being consistent with the participation ratio results.

In summary, the presence of intra-unit-cell rock-salt blocks in the
sulfide RP phases derived fromBaZrS3 and the corresponding selenide
and telluride RP phases effectively produces strongly bonded, intrinsic
superlattices with different periodicities and interfacial regions that

Fig. 3 | Evaluation of factors that influence thermal conductivity. Spectral
energy density calculated fromMLMD for (a) BaZrS3 and (b) Ba3Zr2S7. The overlays
are the harmonic dispersions of phonons in BaZrS3 and Ba3Zr2S7, which contrast
with the blurred SED (SEDs for materials with negligible anharmonic effects look
very much like the corresponding harmonic dispersions, as we show in the case of
silicon in Supplemental Figure S19). c vg of the BaZrS3 and RP structure along the

cross-plane direction as a function of frequency with the dashed black line serving
as a reference for air. d Cumulative number of phononmodes having up to a given
group velocity as a function of frequency for the crystals along cross- (z) and in- (x)
plane directions. e Participation ratio (PR) as a function of frequency for BaZrS3 and
(b) Ba3Zr2S7. f Cumulative number of phonon modes having up to a given PR as a
function of frequency.
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largely reduce phonon velocities andmean free paths, inducing strong
localization. Combinedwith the strong anharmonicity that is known to
be intrinsic to chalcogenides,32–36 the chalcogenide RP phases are a
class of single-crystalline materials that can achieve broadband
restriction of thermal transport, leading to ultralow thermal con-
ductivities, while sustaining high elastic moduli and hence high E/κ
ratios.

In Fig. 4, we compare the E/κof BaZrS3 and its RPderivativeswith a
wide range of single crystals. The materials shown here range from
soft, insulating crystals (e.g., Co6S8) to stiff, conductive crystals (e.g.,
diamond). The elastic moduli of BaZrS3 and RP phases are significantly
higher than those of other ultralow-thermal-conductivity single crys-
tals (e.g., superatoms, metal halide perovskites, and layered per-
ovskites) and are surpassed only by oxides and some semiconductors.
Despite such strong bonding, the RP phases possess an ultralow
thermal conductivity. As a result, the E/κ ratio of the Ba3Zr2S7 single
crystal is the highest reported to date. Though some polycrystalline
materials have larger E/κ ratios,24,53 the record E/κ ratio shown in Fig. 4
among single-crystalline solids is very significant in its own right as not
only it eliminates any extrinsic spurious influences in E/κ values, but
also allows us to study the fundamental mechanisms behind the
mechanically stiff phonon glass paradigm.Additionally, the E/κ ratio of
the RP phase is ~3 times higher than that of BaZrS3.

As shown in Fig. 4, oxides generally possess a high elastic mod-
ulus. By replacing oxygen with sulfur, we reduce thermal conductivity
significantly with moderate reduction in the elastic modulus. Intro-
duction of strongly bonded periodic interfaces can further reduce the
thermal conductivity without sacrificing stiffness proportionately. The
sulfides studied here sit in an ideal regime of relatively high elastic
modulus and low thermal conductivity thereby opening a paradigm
for finding high E/κ ratio materials. For example, RP phases of BaHfS3
are also likely to exhibit a high E/κ ratio. Moreover, the study of chal-
cogenide perovskites has gained momentum only recently. We
anticipate the discovery and synthesis of a broad range of layered
phases such as Aurivillius phases and Dion Jacobson phases in the near
future54,55. These layered materials will present additional opportu-
nities to test and further the paradigm of “mechanically stiff pho-
non glass”.

The RP phases of BaZrS3 is found to possess ultralow thermal
conductivity and ultrahigh modulus-to-thermal conductivity ratio. We

find that the rock-salt layers separating the perovskite sections of the
RP structure lead to highly anisotropic thermal conductivity, with the
cross-plane reaching values comparable to the amorphous solid
despite similar and highly strong bonding across the full unit cell.
Together with simulations, our results provide evidence that the rock-
salt layers in the single crystal RP phases lead to ultralow phonon
velocities, ultrashort phonon mean free paths, and strong localization
within rock-salt layers, leading to ultralow, glass-like thermal con-
ductivity. Our study provides a detailed overview of the mechanisms
needed to achieve ultralow thermal conductivity in a non-vdW,
strongly bonded, layered material.

Methods
Time-domain thermoreflectance (TDTR)
We use a two-tint time-domain thermoreflectance (TDTR) setup to
measure the thermal conductivity of the crystalline and amorphous
BaZrS3, Ba3Zr2S7, and Ba4Zr3S10 specimens56,57. In our TDTR setup, a
Ti:sapphire oscillator (80MHz, ~808nmcentralwavelength, and ~14 nm
full width at half maximum) emanates subpicosecond laser pulses that
are split into a high-power pump and a low-power probe beam. The
pump beam ismodulated at a frequency of 8.4MHz by an electro-optic
modulator (EOM) to create oscillatory heating events at the sample
surface. The probe beam is then directed through a mechanical delay
stage to detect the temporal change in thermoreflectivity which is
related to the surface temperature change. Using a lock-in amplifier and
a balanced photodetector, the probe beam measures the temperature
decay up to 5.5 ns. The TDTR data are analyzed by fitting a cylindrically
symmetric, multilayer thermal model to the ratio of in-phase to out-of-
phase signal (–Vin/Vout) from the RF lock-in amplifier58–61.

Ion irradiation
The BaZrS3 and Ba4Zr3S10 single crystals are irradiated with gold (Au)
ions at an energy of 2.8 MeV using a 6 MV tandem Van de Graaff
accelerator. The ion implantation depths are calculated via SRIM
simulations for an ion energy of 2.8 MeV. Details of the SRIM simula-
tions for determining the stopping range of ions can be found in
previous publications46,62. The implantation depths of the Au ions are
greater than 450 nm. This length scale is much larger than the thermal
penetration depth of TDTR measurements63. Therefore, the thermally
probed region and the measured thermal conductivity are of the
defected region pre-end-of-range45,64.

Data availability
The data that support the findings of this study are available from the
corresponding author upon reasonable request.
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