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1.		Obtaining	the	McKelvey-Shockley	equations	from	the	EPRT	
	
Deriving	the	flux	equations	from	the	full	BTE	requires	a	careful	discussion	of	the	relaxation	
time	approximation,	the	time-derivative	term,	conservation	of	energy,	and	other	issues.		
Here,	we	simply	indicate	how	the	flux	equations	relate	to	the	steady-state	equation	of	
phonon	radiative	transfer	(EPRT)	[7],	
	

  
µ

dIω
dx

=
Iω

0 − Iω
υτ

,	 	 	 	 	 	 	 	 	 (S1a)	

	
which		is	often	the	starting	point	for	thermal	analysis.	In	(S1a),	  Iω θ ,φ( ) 		is	the	phonon	
intensity	in	the	direction	 θ ,φ( ) ,	 µ = cosθ 	is	the	cosine	of	the	angle	between	the	phonon	

propagation	direction	and	the	x-axis,	 υ θ ,φ( ) 	is	the	phonon	velocity	in	the	direction	 θ ,φ( ) ,	
τ ω( ) 	is	an	energy-dependent	scattering	time,	and	  Iω0 	is	the	equilibrium	phonon	intensity.		
Equation	(S1a)	can	be	re-written	as	
	

  
υτµ

dIω
dx

= Iω
0 − Iω .	 	 	 	 	 	 	 	 	 (S1b)	
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Now	recognize	that	  Iω
0 	is	symmetric	in	the	x-direction,	but	  Iω

0 − Iω 	is	anti-symmetric,	
because	there	is	a	net	heat	current	in	the	x-direction.	The	phonon	intensity	can	be	
decomposed	into	symmetric	and	anti-symmetric	components.	If	we	assume	near	
equilibrium	conditions,	the	symmetric	component	is	  Iω

0 ,	therefore,	  Iω
0 − Iω 	is	the	anti-

symmetric	component,	which	can	be	written	as	
	

  
Iω

0 − Iω =
Iω µ > 0( )− Iω µ < 0( )

2
.	 	 	 	 	 	 	 (S2)	

	
Using	(S2)	in	(S1b),	we	find	
	

  

d
dx

2υτµIω( ) = − Iω µ > 0( ) + Iω µ < 0( ) ,	 	 	 	 	 	 (S3)	

	
and	by	integrating	(S3)	over	the	forward	directions,	 µ > 0 ,	we	find	
	

  

d
dx

2υτµIω( )dΩ+∫ = − Iω µ > 0( )dΩ+∫ + Iω µ < 0( )dΩ+∫ .	 	 	 	 (S4)	

	
Integrating	the	intensity	distribution	over	angles	is	like	the	well-known	“differential	
approximation”	[22],	but	here,	we	separately	integrate	over	the	forward	and	reverse	
directions.	We	can	recognize	the	forward	flux	in	the	McKelvey-Shockley	equations	as	
	

  
FQ

+ = Iω µ > 0( )dΩ+∫ .	 	 	 	 	 	 	 	 (S5a)	
	
Similarly,	the	negative	flux	is	the	magnitude	of	the	heat	flowing	in	the	–x-direction,	

	

  
FQ

− = Iω µ < 0( )dΩ−∫ .	 	 	 	 	 	 	 	 (S5b)	
	
Using	these	definitions,	(S4)	becomes	
	

  

d
dx

2υτµIω( )dΩ+∫ = −FQ
+ + FQ

− .	 	 	 	 	 	 	 (S6)	

	
Next,	we	divide	and	multiply	on	the	LHS	by	the	forward	flux	to	write	
	

  

d
dx

2υτµIω( )dΩ+∫
Iω dΩ+∫

Iω dΩ+∫
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
= −FQ

+ + FQ
− .	 	 	 	 	 	 (S7)	

	
The	next	step	is	to	define	the	“mean-free-path	for	backscattering,”	
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λ ≡

2υτµIω( )dΩ+∫
Iω dΩ+∫

=
2ΛµIω( )dΩ+∫

Iω dΩ+∫
,	 	 	 	 	 	 (S8)	

	
where	Λ =υτ is	the	conventional	mean-free-path.	Using	(S8),	we	write	(S7)	as	
	

 

d
dx

λFQ
+⎡⎣ ⎤⎦ = −FQ

+ + FQ
− .	 	 	 	 	 	 	 	 (S9)	

	
Finally,	we	argue	that	although	 Iω

+ 	varies	with	position,	only	its	magnitude	changes;	its	
shape	does	not	change	as	long	as	we	are	near	equilibrium.	Accordingly,	λ 	is	spatially	
uniform,	so	it	may	be	moved	out	of	the	derivative	in	(S9)	to	write	
	

 

dFQ
+

dx
= −

FQ
+

λ
+

FQ
−

λ
,	 	 	 	 	 	 	 	 	 (S10)	

	
which	is	the	McKelvey-Shockley	equation	for	the	forward	flux,	eqn.	(1a).	A	similar	
argument	gives	eqn.	(1b)	for	the	negative	flux.	
	
The	reader	may	be	concerned	about	the	near-equilibrium	assumption	used	to	arrive	at	eqn.	
(S2).	This	assumption	does	not	hold	in	the	ballistic	limit,	but	in	this	case,	the	scattering	time	
(mean-free-path)	approaches	infinity,	and	the	scattering	term,	where	this	approximation	is	
used,	approaches	zero.	Accordingly,	the	near-equilibrium	assumption	should	introduce	no	
error	in	the	diffusive	limit,	where	it	is	valid	nor	in	the	ballistic	limit,	where	it	is	irrelevant.	
This	assumption	may	be	the	source	of	error	we	observe	between	the	diffusive	and	ballistic	
limits.	
	
2.		Derivation	of	the	heat	equations	
	
With	a	uniform	heat	generation	term,	  !S ,	the	steady-state	flux	equations	are:	
	

   

dFQ
+ (x)

dx
= −

FQ
+ (x)
λ

+
FQ

− (x)
λ

+
!S
2
	 	 	 	 	 	 	 (S11a)	

   

dFQ
− (x)

dx
= −

FQ
+ (x)
λ

+
FQ

− (x)
λ

−
!S
2
.	 	 	 	 	 	 	 (S11b)	

The	net	heat	flux	is	
	

  
FQ x( ) = FQ

+ (x)− FQ
− (x) .	 	 	 	 	 	 	 	 (S12)	

Subtract	(S11b)	from	(S11a)	to	find	
	

  

dFQ

dx
= !S .	 	 	 	 	 	 	 	 	 	 (S13)	
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Add	(S11a)	and	(S11b)	to	find	
	

  

d FQ
+ + FQ

−( )
dx

= −
2FQ

λ
	

  
FQ = − λ

2

d FQ
+ + FQ

−( )
dx

	.	 	 	 	 	 	 	 	 (S14)	

Assuming	the	validity	of	the	simplified	BTE	we	began	with,	eqn.	(S11),	these	equations	are	
exact.	Now	we	must	define	temperature.	

	
	

3.		Definition	of	temperature	at	the	nanoscale	
	
Let’s	begin	with	the	equilibrium	fluxes:	

	

  
FQ0

+/− =
CV T0( )

2
υx

+T0 .	 	 	 	 	 	 	 	 	 (S15)	

For	a	small	temperature	deviations	from	the	equilibrium	reference:	
	

  
FQ

+/− x( ) = CV T0( )
2

υx
+ T0 +δT +/− x( )( ) = CV T0( )

2
υx

+T +/− x( ) ,	 	 	 	 (S16)	

where	
	

  T
+/− x( ) = T0 +δT +/− x( ) .	 	 	 	 	 	 	 	 (S17)	

Using	(S14)	and	noting	that	
	

 

dT + −

dx
=

d δT + −( )
dx

,	

we	find	
	

  
FQ = −

λυx
+CV T0( )

2
d T + +T −( ) 2

dx
,	 	 	 	 	 	 	 (S18)	

where	we	are	assuming	that	the	mean-free-path	and	specific	heat	are	independent	of	
position.		Finally,	we	obtain:	
	

 
FQ = −κ bulk

dT
dx

	 	 	 	 	 	 	 	 	 (S19a)	

  
κ bulk =

υx
+λ
2

Cv T0( ) 	 	 	 	 	 	 	 	 	 (S19b)	

  
T = T + +T −( ) 2 .	 	 	 	 	 	 	 	 	 (S19c)	
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4.		Boundary	conditions	
	
Proper	boundary	conditions	for	the	BTE	are	the	incident	fluxes	from	the	two	contacts.		We	
must	use	these	same	b.c.’s	in	the	equivalent	diffusion	equations.		Consider	the	left	contact	
shown	in	Fig.	S1.	

	
	

Fig.	S1.		Boundary	conditions	at	the	left	contact.	
	
	
At	x	=	0+,	the	net	flux	is	
	

  
FQ 0+( ) = FQ

+ 0+( )− FQ
− 0+( ) ,	 	 	 	 	 	 	 	 (S20a)	

which	is	also	
	

  
FQ 0+( ) = −κ bulk

dT
dx x=0+

.	 	 	 	 	 	 	 	 (S20b)	

The	incident	fluxes	(the	proper	boundary	conditions	for	the	BTE)	are	
	

  
FQ

+ x = 0+( ) =υx
+ Cv

2
T + x = 0+( ) =υx

+ Cv

2
TL 	 	 	 	 	 	 (S21a)	

  
FQ

− x = L−( ) =υx
+ Cv

2
T − x = L−( ) =υx

+ Cv

2
TR .	 	 	 	 	 	 (S21b)	

In	these	equations,	the	parameters,	specific	heat	and	average	+x-directed	velocity,	describe	
the	film;	the	temperature	is	that	of	the	metal.	(We	are	assuming	that	Cv	is	evaluated	at	the	
reference	temperature,	T0.)	
	
At	  x = 0+ ,	we	add	the	forward	and	reverse	fluxes	in	the	film	to	find	
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FQ

+ 0+( ) + FQ
− 0+( ) = T + 0+( )Cv

2
υx

+ +T − 0+( )Cv

2
υx

+ 	

or	

  

FQ
+ 0+( ) + FQ

− 0+( ) = Cvυx
+

T + 0+( ) +T − 0+( )
2

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟
.	

By	using	
	

  

T 0+( ) = T + 0+( ) +T − 0+( )
2

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟
,	

we	find	

  
FQ

+ 0+( ) + FQ
− 0+( ) = Cvυx

+ T 0( )
2

.	 	 	 	 	 	 	 (S22)	

	
From	(S20a)	and	(S20b)	we	have	
	

  
−κ bulk

dT
dx x=0+

= FQ
+ 0+( )− FQ

− 0+( ) ,	
and	from	(S12)	
	

  
FQ

− 0+( ) = Cvυx
+ T 0( )

2
− FQ

+ 0+( ) .	
From	the	above	two	equations,	we	find	
	

  
−κ bulk

dT
dx x=0+

+CvT 0+( )υx
+ = 2FQ

+ 0( ) 	,	 	 	 	 	 	 (S23)	

which	is	the	boundary	condition	at	x	=	0.	Similar	arguments	can	be	made	for	the	boundary	
condition	at	x	=	L.	
	
In	summary,	the	boundary	conditions	at	x	=	0	and	x	=L	are	
	

  
−κ bulk

dT
dx x=0+

+CvT 0+( )υx
+ = 2FQ

+ 0( ) 		 	 	 	 	 	 (S24a)	

  
−κ bulk

dT
dx x=L−

−CvT L−( )υx
+ = −2FQ

− L( ) .	 	 	 	 	 	 (S24b)	

Note	that	
  
FQ

+ 0( ) 	is	incident	flux	at	x	=	0,	which	is	known	because	it	is	the	flux	injected	from	
the	equilibrium	metal	contact	at	the	left.		Also,	 

FQ
− L( ) 	is	known.	We	cannot	specify	the	

temperatures	at	the	two	ends	–	we	can	only	specify	the	incident	heat	fluxes.	
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Alternative	view	of	boundary	conditions:		ballistic	resistors	at	x	=	0	and	x	=	L.	
	
From	(S24a),	we	have	
	

  
FQ 0( ) = −κ bulk

dT
dx x=0+

= 2FQ
+ 0( )−CvT 0+( )υx

+ .	

Using	(S11a)	for	
  
FQ

+ x = 0+( ) = FQ
+ 0( ) ,	this	becomes	

	

  
FQ 0( ) = 2

Cv

2
υx

+T + 0+( )⎡

⎣
⎢

⎤

⎦
⎥ −Cvυx

+T 0+( ) ,	
or	

  
FQ 0( ) = Cvυx

+ T + 0+( )−T 0+( )⎡
⎣

⎤
⎦ .	 	 	 	 	 	 	 (S25)	

In	terms	of	heat	current	
  
IQ 0( ) = AFQ 0( ) 	(not	heat	current	density),	(S25)	becomes	

	

  
IQ 0( ) = ACvυx

+ T + 0+( )−T 0+( )⎡
⎣

⎤
⎦ 	 	 	 	 	 	 	 (S26)	

Note	that		
	

  
T + 0+( ) = TL ,	

In	words,	the	forward	temperature	at	x	=	0	is	the	temperature	of	the	left	contact,	which	is	
known.	Finally,	we	write	the	temperature	jump	as	
	

  
ΔT 0( ) = IQ 0( ) RB

2
,	 	 	 	 	 	 	 	 	 (S27a)	

where	
	

  
ΔT 0( ) = TL −T 0+( )⎡

⎣
⎤
⎦ 	 	 	 	 	 	 	 	 (S27b)	

  
RB = 2

ACvυx
+ 	 	 	 	 	 	 	 	 	 	 (S27c)	

is	the	ballistic	thermal	resistance.	
	
In	summary,	the	boundary	conditions	in	terms	of	the	ballistic	thermal	resistance	are:	
	

  
ΔT 0( ) = FQ 0( ) RB A

2
	 	 	 	 	 	 	 	 	 (S28a)	

  
ΔT L( ) = FQ L( ) RB A

2
,		 	 	 	 	 	 	 	 (S28b)	

	
where	the	ballistic	thermal	resistance	is	
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RB A = 2

Cvυx
+ ,	 	 	 	 	 	 	 	 	 	 (S29)	

and	the	temperature	jumps	are	defined	as	
	

  
ΔT 0( ) = TL −T 0+( )⎡

⎣
⎤
⎦ 	 	 	 	 	 	 	 	 (S30a)	

 
ΔT L( ) = T L−( )−TR

⎡
⎣

⎤
⎦ .	 	 	 	 	 	 	 	 (S30b)	

	
	
5.	Directed	temperatures	
	
After	solving	Fourier’s	Law	and	the	heat	equation	for	T(x),	can	we	deduce	the	directed	
temperatures,		T+(x)	and	T-(x)	from	our	solutions?	
	
From	Fourier’s	Law:	

 
FQ = −κ bulk

dT
dx

,	

we	can	write:	
	

  
FQ = −

κ bulk

2
d T + +T −( )

dx
,	 	 	

and	solve	for	
	

  

dT + x( )
dx

+
dT − x( )

dx
= −

2FQ

κ bulk

.	 	 	 	 	 	 	 	 (S31a)	

The	net	heat	flux	can	also	be	written	as	
	

  
FQ =

CV

2
υx

+ T + x( )−T − x( )( ) ,	
which	can	be	differentiated	to	find	(use	(S13))	
	

   

dT + x( )
dx

−
dT − x( )

dx
= 2 !S

CVυx
+ .	 	 	 	 	 	 	 	 (S31b)	

(S31a)	and	(S31b)	are	two	equations	in	two	unknowns.		We	can	solve	these	two	equations	
to	find	
	

  

dT + x( )
dx

=
dT x( )

dx
+
!S

Cvυx
+ 	 	 	 	 	 	 	 	 (S32a)	

  

dT − x( )
dx

=
dT x( )

dx
−
!S

Cvυx
+ .	 	 	 	 	 	 	 	 (S32b)	
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In	these	equations,	 T x( ) 	is	known	from	the	solution	and	  T + x = 0( ) = TL 	and	 T
− x = L( ) = TR .		

Equations	(S32a)	and	(S32b)	can	be	integrated	to	find	
	

   
T + x( )−TL = T x( )−T (0)+

!S
Cvυx

+ x 	 	 	 	 	 	 	 (S33a)	

   
T − x( )−TR = T x( )−T (L)+

!S
Cvυx

+ L− x( ) .	 	 	 	 	 	 (S33b)	

These	equations	are	correct,	but	they	can	be	written	more	simply	in	terms	of	the	ballistic	
thermal	resistance.	
	
Begin	with	(S33a)	and	write	it	as	
	

   
T + x( ) = T x( ) +TL −T (0)+

!S
Cvυx

+ x ,	

or	

   
T + x( ) = T x( ) + ΔT (0)+

!S
Cvυx

+ x ,	

which,	using	(S28a),	is	
	

   
T + x( ) = T x( ) + IQ

RB

2
+
!S

Cvυx
+ x 	.	 	 	 	 	 	 	 (S34)	

Now	solve	
	

  

dFQ

dx
= !S 	

for	
	

   
FQ x( ) = FQ 0( ) + !Sx .	
	

Use	this	result	in	(S34)	to	find	
	

  
T + x( ) = T x( ) + IQ (0)

RB

2
+

FQ x( )− FQ 0( )
Cvυx

+ 	

  
T + x( ) = T x( ) + IQ (0)

RB

2
+

IQ x( )− IQ 0( )
ACvυx

+ 	

  
T + x( ) = T x( ) + IQ (0)

RB

2
+ IQ x( ) RB

2
− IQ 0( ) RB

2
,	

	
which	leads	to	the	final	result	
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T + x( ) = T x( ) + IQ x( ) RB

2
	 	 	 	 	 	 	 	 (S35a)	

  
T − x( ) = T x( )− IQ x( ) RB

2
.	 	 	 	 	 	 	 	 (S35b)	

	
The	directed	temperatures	provide	a	clear	way	to	think	about	temperature	at	the	
nanoscale.		How	does	this	approach	compare	to	other	definitions?		According	to	eqns.	(S16)	
	

  
FQ

+ x( ) = CV T0( )
2

υx
+T + x( ) 	

  
FQ

− x( ) = CV T0( )
2

υx
+T + x( ) 	

	
from	which	we	find	
	

  
T + x( ) = 2FQ

+ x( )
CV T0( )υx

+ 	 	 	 	 	 	 	 	 	 (S36a)	

  
T − x( ) = 2FQ

− x( )
CV T0( )υx

+ .	 	 	 	 	 	 	 	 	 (S36b)	

	
Using	(S19c),	we	find	
	

  
T x( ) = T + x( ) +T − x( )

2
=

FQ
+ x( ) + FQ

− x( )
CV T0( )υx

+ =
FQ

tot x( )
CV T0( )υx

+ ,	 	 	 	 (S37)	

	
where	

 
FQ

+ x( ) + FQ
− x( ) is	the	sum	of	the	forward	and	backward	directed	fluxes.	Next,	we		

write	
 
FQ

tot x( ) 	as	
	

  
FQ

tot x( ) = 4πe x( )υx
+ ,	 	 	 	 	 	 	 	 	 (S38)	

	
where	 e x( ) 	is	the	energy	density	per	steradian.	Using	(S38)	in	S37),	we	find	
	

  
T x( ) = 4πe x( )

CV T0( ) ,	 	 	 	 	 	 	 	 	 (S39)	

	
which	is	a	commonly	used	definition	of	temperature.	Our	definition	in	terms	of	
temperatures	associated	with	the	forward	and	backward	fluxes	provides	a	physical	
justification	for	(S39)	out	of	equilibrium.	
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6.		The	ballistic	solution	
	
Begin	with	the	flux	equations,	(S10a)	and	(S10b)	in	the	ballistic	limit,	λ →∞ 	to	find	
	

   

dFQ
+ (x)

dx
= +
!S
2
		 	 	 	 	 	 	 	 	 (S40a)	

	

   

dFQ
− (x)

dx
= −
!S
2
	.	 	 	 	 	 	 	 	 	 (S40b)	

Recall	how	the	forward	and	backward	fluxes	are	related	to	the	forward	and	backward	
stream	temperatures:	
	

  
FQ

+ =υx
+ Cv

2
T + 	

  
FQ

− =υx
+ Cv

2
T − ,	

which	can	be	used	in	(S40)	to	find	
	

   

dT + (x)
dx

= +
!S

υx
+Cv

	

   

dT − (x)
dx

= −
!S

υx
+Cv

.	

After	integrating	these	equations,	we	find	
	

   
T + (x) = TL +

!S
υx

+Cv

⎛

⎝⎜
⎞

⎠⎟
x 	 	 	 	 	 	 	 	 (S41a)	

   
T − (x) = TR +

!S
υx

+Cv

⎛

⎝⎜
⎞

⎠⎟
L− x( ) .	 	 	 	 	 	 	 	 (S41b)	

From	the	definition	of	temperature,	we	find:	

   
T x( ) = T + (x)+T − (x)

2
=

TL +TR

2
+

!SL
2υx

+Cv

⎛

⎝⎜
⎞

⎠⎟
.	

The	final	result	is	

   
T x( ) = TL +TR

2
+

!SL
2υx

+Cv

⎛

⎝⎜
⎞

⎠⎟
.	 	 	 	 	 	 	 	 (S42)	
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Case	1:		Cross-plane	with	a	temperature	difference	but	no	heat	source.	
	
According	the	(S42),	the	ballistic	solution	is:	
	

  
T x( ) = TL +TR

2
	 .	 	 	 	 	 	 	 	 (S43a)	

The	Fourier’s	Law	solution	is	given	by	eqns.	(16)	and	(17)	in	the	text.	In	the	ballistic	limit,	

 κ bulk →∞ ,	this	solution	gives	the	same	result	for	the	ballistic	limit,	(S43a).	
	
Case	2:		Cross-plane	with	no	temperature	difference	but	with	an	internal	heat	source	
	
According	the	(S42),	the	ballistic	solution	is:	

	

   
T x( ) = T0 +

!SL
2υx

+Cv

⎛

⎝⎜
⎞

⎠⎟
,		 	 	 	 	 	 	 	 (S43b)	

where	  T0 = TL = TR .	The	Fourier’s	Law	solution	is	given	by	eqns.	(18)	and	(19)	in	the	text.	In	
the	ballistic	limit,	 κ bulk →∞ ,	this	solution	gives	the	same	result	for	the	ballistic	limit,	
(S43b).	
	
	
7.		Summary	of	equations	
	
We	solve	the	conventional	heat	equation:	

   

d 2T
dx2 = −

!S
κ bulk

	 	 	 	 	 	 	 	 	 	 (S44a)	

with	the	unconventional	boundary	conditions:	

  
ΔT 0( ) = TL −T 0+( ) = FQ 0( ) RB A

2
	 	 	 	 	 	 	 (S44b)	

  
ΔT L( ) = T L−( )−TR = FQ L( ) RB A

2
.	 	 	 	 	 	 	 (S44c)	

where	the	ballistic	thermal	resistance	is	given	by	

  
RB A = 2

Cvυx
+ .	 	 	 	 	 	 	 	 	 	 (S44d)	

After	solving	for	 T x( ) ,	the	directed	temperatures	can	be	obtained	from	

  
T + x( ) = T x( ) + IQ x( ) RB

2
	 	 	 	 	 	 	 	 (S44e)	

  
T − x( ) = T x( )− IQ x( ) RB

2
.	 	 	 	 	 	 	 	 (S44f)	
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8.	Solution:		Temperature	difference	with	no	internal	heat	generation	
	
The	figure	below	shows	the	problem	to	be	solved.	

	
Fig.	S2	 Temperature	vs.	position	for	the	case	of	contacts	with	different	temperatures	and	

no	internal	heat	generation.	
	
	
The	heat	flux	is:	
	

 
FQ =κ bulk

TL − ΔT − TR + ΔT( )
L

⎛

⎝
⎜

⎞

⎠
⎟ 	

with	the	boundary	condition:	
	

  
ΔT = FQ

RB A
2

.	

These	two	equations	give	
	

  
FQ =κ bulk

TL −TR − 2ΔT
Lx

⎛
⎝⎜

⎞
⎠⎟
=κ bulk

TL −TR − RB A( )FQ

Lx

⎛

⎝
⎜

⎞

⎠
⎟ 	

  
FQ 1+

κ bulk RB A
Lx

⎛
⎝⎜

⎞
⎠⎟
=κ bulk

TL −TR

Lx

⎛
⎝⎜

⎞
⎠⎟
.	 	 	 	 	 	 	 (S45)	

From	(S9b)	and	(S17c),		
	

  
κ bulk RB A =

υx
+λ
2

2
υx

+CV

= λ ,	

so	(S31)	becomes	
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FQ 1+ λ

Lx

⎛
⎝⎜

⎞
⎠⎟
=κ bulk

TL −TR

Lx

⎛
⎝⎜

⎞
⎠⎟
	

  
FQ =

κ bulk

1+ λ Lx( )
TL −TR

Lx

⎛
⎝⎜

⎞
⎠⎟
=κ app

TL −TR

Lx

⎛
⎝⎜

⎞
⎠⎟
.	 	 	 	 	 	 (S46)	

and	we	have	derived	eqns.	(14)	and	(15)	of	the	text.	
	
	
9.			Solution:		No	temperature	difference	with	internal	heat	generation	
	
In	this	case,	we	solve	
	

   

d 2T
dx2 = −

!S
κ bulk

.	

The	general	solution	is	
	

   
T x( ) = −

!S
κ bulk

⎛
⎝⎜

⎞
⎠⎟

x2

2
+ c1x + c2 .		 	 	 	 	 	 	 (S47)	

	
Assume	that	the	left	and	right	contacts	are	at	temperature,	  T0 .		At	the	two	ends	of	the	film,	
	

  
T 0+( ) = T Lx

−( ) = Tb ≠ T0 .	

The	temperatures	at	the	boundaries	of	the	film,	
  
T 0+( ) = T Lx

−( ) ,	cannot	be	imposed,	they	are	
a	result	of	the	calculation.	Since	the	two	boundary	temperatures	are	identical,	the	general	
solution,	(S47),	gives	in	this	case	
	

   
T x( ) = !S

2κ bulk

⎛
⎝⎜

⎞
⎠⎟

L− x( )x +Tb ,		 	 	 	 	 	 	 (S48)	

and	we	must	determine	the	boundary	temperature,	 Tb .		The	situation	is	shown	in	the	figure	
below.	
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Fig.	S3	 Temperature	vs.	position	for	the	case	of	contacts	with	the	same	temperatures	and	

with	uniform	internal	heat	generation.	
	
The	temperature	at	the	x	=	0	boundary	is	given	by:	
	

  
Tb −T0 = −FQ 0( ) RB A

2
.	 	 	 	 	 	 	 	 (S49)	

The	temperature	jump	is	up	as	we	go	from	the	metal	to	the	film,	rather	than	down,	as	we	
assumed	when	defining	 ΔT 	in	eqn.	(9a)	of	the	text,	so	we	have	a	minus	sign	in	the	equation	
above.	
	
The	heat	flux	at	x	=	0	is	
	

  
FQ 0( ) = −κ bulk

dT
dx x=0+

.	

Using	(S44),	we	find	
	

   

dT x( )
dx

=
!S

2κ bulk

⎛

⎝⎜
⎞

⎠⎟
L− 2x( ) ,	

which	gives	
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dT x( )
dx

x=0+

=
!SL

2κ bulk

⎛
⎝⎜

⎞
⎠⎟
	

at	x	=	0.		This	gives	a	heat	flux	at	x	=	0	that	is	
	

   
FQ 0( ) = −κ bulk

!SL
2κ bulk

⎛
⎝⎜

⎞
⎠⎟
=
!SL
2
,		 	 	 	 	 	 	 (S50)	

which	is	intuitively	obvious.	
	
Equation	(S50)	can		be	used	in	(S49)	to	find	
	

   
Tb −T0 =

!SL
2

⎛
⎝⎜

⎞
⎠⎟

RB A
2

.	 	 	 	 	 	 	 	 	 (S51)	

Using	the	definition	of	ballistic	thermal	resistance,	
	

  
RB A = 2

Cvυx
+ ,	

eqn.	(S51)	becomes	
	

   
ΔT = Tb −T0 =

!SL
2

⎛
⎝⎜

⎞
⎠⎟

1
Cvυx

+ .	 	 	 	 	 	 	 	 (S52)	

which	is	independent	of	the	mean-free-path.			
	
To	summarize,	the	solution	is:	
	

   
T x( ) = !S

2κ bulk

⎛
⎝⎜

⎞
⎠⎟

L− x( )x +Tb 		 	 	 	 	 	 	 (S53a)	

   
Tb = T0 +

!SL
2

⎛
⎝⎜

⎞
⎠⎟

1
Cvυx

+ .	 	 	 	 	 	 	 	 	 (S53b)	

It	is	interesting	to	note	that	even	for	 Lx >> λ 	(diffusive	limit),	there	is	a	temperature	jump	
at	the	contacts.		This	is	an	example	of	where	the	conventional	application	of	Fourier’s	Law	
(which	assumes	  T 0( ) = T Lx( ) = T0 	)	fails	–	even	for	films	many	mean-free-paths	long.		In	
practice,	however,	we	expect	that	 ΔT << δT ,	so	the	effect	would	be	hard	to	observe.	
	
Suggested	exercises:	
	

1) Repeat	the	derivation	but	do	not	assume	that	the	two	contacts	are	at	the	same	
temperature.	
	

2) Repeat	the	derivation	for	a	delta-function	heat	source	at	the	center	of	the	film.	
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10.		Comparisons	to	Monte	Carlo	simulations	of	Hua	and	Cao	
	
In	this	section,	we	present	comparisons	of	Fourier’s	Law	solutions	to	the	Monte	Carlo	
simulation	results	of	Hua	and	Cao	[16,	18].	
	
Temperature	difference	but	no	internal	heat	generation	
Consider	first	the	case	of	a	temperature	difference	(TD)	between	the	two	contacts,	but	no	
internal	heat	generation	(IHG).		The	normalized	temperature	profiles	for	three	different	
Knudsen	numbers	are	plotted	in	Fig.	S4,	which	compares	the	Fourier’s	Law	solution	as	
given	by	eqn.	(16)	to	Monte	Carlo	simulations	from	[16].	In	the	diffusive	limit,	 T x( ) 	varies	
linearly	from	 TL 	to	 TR 		and	both	solutions	agree.		In	the	ballistic	limit	(not	shown	in	Fig.	

S4),	  T x( ) = TL +TR( ) 2 ,	and	Fourier’s	Law	gives	the	correct	answer.		Figure	S4	shows	a	
small	difference	in	the	quasi-ballistic	regime	(  Knx ≈ 5.0 ),	which	would	presumably	get	
smaller	if	the	Knudsen	number	were	larger.		For	this	case	(which	is	much	like	the	case	
treated	in	[9]),	Fourier’s	Law	provides	a	good	description	of	ballistic	to	diffusive	transport.		
Figure	S4	should	be	compared	to	Fig.	3a	of	the	text.	
	

	
Fig.	S4.	 Normalized	temperature	profile	

 
T x( )−TR( ) TL −TR( ) 	vs.	normalized	distance,	

 x Lx ,	for	cross-plane	heat	transport	with	no	internal	heat	generation	(case	a)	in	
Fig.	1).		Three	different	Knudsen	numbers	are	shown.		Lines	are	the	result	of	
Fourier’s	Law,	and	circles	are	Monte	Carlo	simulations	taken	from	[18].		

	
	
Figure	S5,	a	plot	of	  ΔT 0( ) TL −TR( ) 	vs.	 Knx 	for	case	1a	(cross-plane	thermal	transport	
without	internal	heat	generation)	compares	Fourier’s	Law	and	Monte	Carlo	solutions.		
Fourier’s	Law	predicts	a	temperature	jump	that	rises	from	zero	to	  0.5 TL −TR( ) 	as	 Knx

increases	from	  Knx <<1to	  Knx >>1 .		A	temperature	jump	of	  0.5 TL −TR( ) 	is	expected	in	the	
ballistic	limit	[12,	24]..		Figure	S5	shows	good	agreement	between	Fourier’s	Law	and	Monte	
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Carlo	solutions	for	small	 Knx ,	but	for	large	 Knx ,	the	Monte	Carlo	results	are	about	5%	
below	the	Fourier’s	Law	solution.	Good	agreement	is	expected	for	very	large	 Knx 	(the	
ballistic	limit).	It	is	possible	that	the	Monte	Carlo	simulations	would	approach	the	correct	
ballistic	limit	at	very	large	Knudson	number,	but	it	may	also	be	that	small	numerical	errors	
are	preventing	the	Monte	Carlo	simulations	from	reaching	the	correct	ballistic	limit	of	

  0.5 TL −TR( ) .		
	
Fig.	S5	should	be	compared	to	Fig.	3b	of	the	text.	
	

	
Fig.	S5.	 Normalized	temperature	jump,	  ΔT x = 0( ) TL −TR( ) 	vs.	 Knx 	for	cross-plane	

thermal	transport	with	no	internal	heat	generation	(case	1b	in	Fig.	1).	The	
Fourier’s	Law	solution	(line)	is	from	eqn.	(17),	and	the	Monte	Carlo	solutions	of	
the	BTE	(symbols)	are	from	[18].	

	
	
No	temperature	difference	but	with	internal	heat	generation	
Consider	next,	the	case	with	no	temperature	difference	between	the	contacts	but	with	
internal	heat	generation.	Figure	S6	plots	the	normalized	temperature,	

  
T x( )−Tb( ) Tb −T0( ) 	

vs.	normalized	distance,	 x Lx 	for	three	different	Knudson	numbers	and	compares	Fourier’s	
Law	to	Monte	Carlo	simulations.		For	  Knx = 0.01 	and	  Knx = 0.1 the	agreement	is	excellent	
while	for	  Knx = 0.5 ,	the	Fourier’s	Law	solution	is	somewhat	below	the	Monte	Carlo	

solution.	As	 Knx →∞ ,	
  
T x( )−Tb( ) Tb −T0( )→ 0 .		

	
Figure	S6	should	be	compared	to	Fig.	5a	in	the	text.	
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Fig.	S6.	 Nanofilm	(cross-plane)	with	internal	heat	source.		Plot	of	

  
T x( )−Tb( ) Tb −T0( ) 	vs.	

 x Lx 	for	  Knx = 0.01 ,	  Knx = 0.1 ,	and	  Knx = 0.5 .		Lines	are	Fourier’s	Law	solutions	
and	symbols	are	the	Monte	Carlo	solutions	of	[16].	

	
	
Figure	S7	is	a	plot	of	the	normalized	temperature	rise,	 δT ΔT ,	in	the	center	of	the	film	as	
given	by	eqn.	(20)	vs.	 Knx .	Fourier’s	Law	predicts		that	 δT ΔT →∞ 	as		  Knx → 0 	and	

  δT ΔT → 0 	as	 Knx →∞ .	Good	agreement	between	Fourier’s	Law	and	Monte	Carlo	
solutions	is	observed	for	small	 Knx .	For	large		 Knx ,	  Tmax → Tb 	in	both	cases,	but	the	Monte	
Carlo	simulations	seem	to	be	approaching	the	correct	ballistic	limit	more	slowly	than	the	
Fourier’s	Law	solution.	We	conclude,	however,	that	Fourier’s	Law	provides	quite	accurate	
solutions	from	the	ballistic	to	diffusive	limits	for	this	internal	heat	generation	problem.	
	
Figure	S7	should	be	compared	to	Fig.	5b	in	the	text.	
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Fig.	S7.	 		Normalized	temperature	rise,	 δT ΔT 	vs.	 Knx 	for	cross-plane	thermal	transport	

with	internal	heat	generation	(case	1b)	in	Fig.	1).	The	Fourier’s	Law	solution	(line)	
is	from	eqn.	(20),	and	the	Monte	Carlo	simulations	(symbols)	are	from	[16].	

	
	
Thin	films	and	nanowires	
We	turn	next	to	the	thin	films	and	nanowires	shown	in	Figs.	1c)	–	1f).		A	proper	treatment	
of	these	structures	requires	a	two-dimensional	solution.		Extension	of	the	methods	
described	here	to	two	and	three	dimensions	is	needed,	but	beyond	the	scope	of	this	paper.		
Instead,	we	will	examine	one-dimensional	(1D)	solutions	to	these	problems	and	show	that	
1D	solutions	can	be	quite	accurate.	
	
Following	Hua	and	Cao,	we	examine	the	apparent	thermal	conductivity	for	the	structures	
shown	in	Figs.	1c)	–	1f).		Equation	(15)	gave	the	apparent	thermal	conductivity	for	the	case	
of	a	temperature	difference	between	contacts	with	no	internal	heat	generation.	In	terms	of	
the	mean-free-path	for	backscattering	in	the	bulk,	λ ,	eqn.	(15)	in	the	text	can	be	written	as	
	

  
κ app =

Cvυx
+λ 2

1+ λ Lx

	.	 	 	 	 	 	 	 	 	 (S54)	

In	a	thin	film	or	nanowire,	the	mean-free-path	is	shortened	by	boundary	scattering	to	
	

  

1
λ
→ 1

λ
+ 1
βd

	,	 	 	 	 	 	 	 	 	 (S55)	

where	β 	is	an	empirical	parameter	and	 
d = Ly ,	the	thickness	of	the	film	or	 d = D ,	the	

diameter	of	the	nanowire.	Equation	(S55)	can	be	regarded	as	an	empirical	fit	to	more	
rigorous	treatments	like	that	of	Fuchs-Sondheimer	[27]	and	McGaughey	et	al.	[28].	Using	
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(24)	in	(23)	and	expressing	the	result	in	terms	of	the	Knudson	numbers	 Knx = Λ Lx 	and	

 
Kny = Λ d ,	we	find	for	the	case	of	a	temperature	difference	(TD),	
	

  

κ app TD( ) = κ bulk

1+ 4
3

Knx + Kny β( )
.		 	 	 	 	 	 	 (S56)	

Equation	(22)	gave	the	apparent	thermal	conductivity	for	the	case	of	no	temperature	
difference	between	contacts	with	internal	heat	generation.	In	terms	of	the	mean-free-path	
for	backscattering	in	the	bulk,	λ ,	eqn.	(22)	can	be	written	as	
	

  
κ app =

Cvυx
+λ 2

1+ 3λ Lx

	.	 	 	 	 	 	 	 	 	 (S57)	

Using	eqn.	(24)	for	the	mean-free-path	in	a	thin	film	or	nanowire	in	eqn.	(S57)	and	
expressing	the	result	in	terms	of	the	Knudson	numbers	 Knx = Λ Lx 		and	 

Kny = Λ d ,	we	
find	for	the	case	of	internal	heat	generation	(IHG),	

  

κ app IHG( ) = κ bulk

1+ 4
3

3Knx + Kny β( )
.		 	 	 	 	 	 	 (S58)	

	
Thin	film	in	the	diffusive	limit	Knx	<<	1	
For	a	long	nanofilm,	transport	is	diffusive	in	the	x-direction,	  Knx → 0 ,	so	eqns.	(25)	and	
(27)	give	the	apparent	thermal	conductivities	as	

  

κ app TD( ) =κ app IHG( ) = κ bulk

1+ 4
3βtf

Kny

.	 	 	 	 	 	 (S59)	

We	can	also	compute	the	apparent	thermal	conductivity	from	the	Fuchs-Sondheimer	
equation	assuming	diffusive	boundary	scattering	(specularity	parameter,	  p = 0 )	[27],	
	

  
κ app FS( ) =κ bulk 1−

3Kny

2
1
t3 −

1
t5

⎛
⎝⎜

⎞
⎠⎟

1− exp − t Kny( )( )dt
1

∞

∫
⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
.		 	 	 (S60)	

Figure	S8	compares	the	results	of	various	approaches.		First,	note	that	in	contrast	to	the	
Fourier’s	Law	prediction	of	eqn.	(28),	the	apparent	thermal	conductivities	for	the	case	of	a	
temperature	difference	is	slightly	higher	than	for	the	case	of	internal	heat	generation.	The	
cause	for	this	difference	is	not	clear.	Second,	note	that	the	Fuchs-Sondheimer	equation	
agrees	well	with	the	Monte	Carlo	simulations	for	the	TD	case.		Finally,	note	that	the	simple	
Fourier’s	Law	approach	with	an	empirical	  

βtf = 2.9 	agrees	well	with	the	Monte	Carlo	

results	for	the	TD	case	and	with	the	Fuch-Sondheimer	results	(especially	for	 
Kny 	less	than	

about	5).		The	value,	  
βtf = 2.9 ,	is	between	the	 3π 2 	given	by	Flik	[29]	and	the	8/3	given	by	

Majumdar	[7].	
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Fig.	S8.	 Apparent	thermal	conductivity	vs.	Knudson	number,	 

Kny = Λ Ly for	in	plane	

transport	in	a	diffusive	thin	film	  Knx <<1 .	Both	temperature	difference	and	
internal	heat	generation	cases	of	Fig.	1c)	and	1d)	are	considered.	Symbols	are	
Monte	Carlo	solutions	of	the	BTE	[16],	the	solid	line	is	the	Fuch-Sondheimer	
calculation,	eqn.	(S56),	and	the	dashed	line	is	the	Fourier’s	Law	solution,	eqn.	
(S45),	with	  

βtf = 2.9 .	
	
	
Nanowire	from	diffusive	to	quasi-ballistic	
For	long	nanowires,	transport	is	diffusive	in	the	x-direction,	  Knx → 0 	so	the	apparent	
thermal	conductivity	is	given	by	eqn.	(S55)	with	 

Kny = Λ D ,	where	D	is	the	nanowire	
diameter.	For	the	nanowires	with	a	temperature	difference,	we	can	also	compute	the	
apparent	thermal	conductivity	from	the	Fuchs-Sondheimer	equation	with	  p = 0 	[27],	
	

  
κ app TD( ) =κ bulk 1− 12

π
dx dyexp − xy Kny( )

1

∞

∫ 1− x2( )1/2
y2 −1( )1/2

y−4

0

1

∫
⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
.	 	 (S61)	

Figure	S9	compares	the	three	approaches.	First,	note	again	that	in	contrast	to	the	Fourier’s	
Law	prediction	of	eqn.	(S59),	the	apparent	thermal	conductivities	obtained	by	Monte	Carlo	
simulation	for	the	case	of	a	temperature	difference	is	slightly	higher	than	for	the	case	of	
internal	heat	generation.	The	cause	for	this	difference	is	not	clear.	Second,	note	that	the	
Fuchs-Sondheimer	equation	agrees	well	with	the	Monte	Carlo	simulations	for	the	TD	case.		
Finally,	note	that	the	simple	Fourier’s	Law	approach	with	  βnw = 4 3 	agrees	well	with	the	
Monte	Carlo	results	for	the	TD	case	and	with	the	Fuch-Sondheimer	results.	The	value,	

  βnw = 4 3 	is	the	expected	value	for	a	nanowire	[27,	28].	Finally,	we	should	mention	that	the	
gray	model	used	here	(and	in	[16,	18])	predicts	a	faster	approach	to	the	bulk	thermal	
conductivity	with	increasing	 

Ly 	or	 D 	than	does	a	non-gray	model	[28].	
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Fig.	S9		Diffusive	nanowire	(  Knx <<1).		Apparent	thermal	conductivity	vs.	Knudson	

number,	 
Kny = Λ D 	for	a	diffusive	nanowire,	  Knx <<1 .		Both	temperature	

difference	and	internal	heat	generation	cases	Fig.	1e)	and	1f)	are	considered.	
Symbols	are	Monte	Carlo	simulation	results	[16],	the	solid	line	is	the	Fuch-
Sondheimer	calculation,	eqn.	(S61),	and	the	dashed	line	is	the	Fourier’s	Law	
solution,	eqn.	(S59),	with	  βnw = 4 3 .	

	
	
Finally,	consider	the	case	of	an	nanowire	for	  0 < Knx <10 .		The	apparent	thermal	
conductivities	for	the	TD	and	IHG	cases	are	given	by	eqns.	(S56)	and	(S58)	for	the	Fourier’s	
Law	solution;	in	this	case,	the	two	apparent	thermal	conductivities	are	different.	Figure	S10	
compares	the	three	approaches	for	  

Kny = 1 .		When	 Knx 	is	just	a	little	greater	than	zero,	the	
TD	and	IHG	thermal	conductivities	are	predicted	by	Fourier’s	Law	to	be	distinctly	different.		
In	this	case,	the	agreement	with	the	Monte	Carlo	solutions	of	the	BTE	is	much	better.	(This	
suggests	that	one	possible	explanation	for	the	difference	in	

  
κ app TD( ) 	and		  κ app IHG( )

observed	in	the	Monte	Carlo	simulation	results	of	Fig.	S8	might	be	a	numerical	artifact		due	
to	a	length,	 Lx 	,	that	is	not	long	enough	to	be	fully	diffusive.)	
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Fig.	S10.	Apparent	thermal	conductivities	for	a	nanowire	with	  

Kny = 1	vs.	 Knx .	Symbols	are	
Monte	Carlo	simulation	results	[16],	and	the	dashed	lines	are	the	Fourier’s	Law	
solution,	eqns.	(S52)	and	(S54)	with	  βnw = 4 3 .	

	
	
11)	Comparison	to	the	solutions	of	Ordonez-Miranda,	et	al.	
	
A	recent	paper	by	Ordonez-Miranda,	et	al.:	
	

Jose	Ordonez-Miranda,	Rongqui	Yang,	Sebastien	Volz,	and	J.J.	Alvarado-Gil,	“Steady-
state	and	modulated	heat	conduction	in	layered	systems	predicted	by	the	analytical	
solution	of	the	phonon	Boltzmann	transport	equation,”	J.	Appl.	Phys.,	118,	075103,	
2015.	

	
presented	highly-accurate	analytical	solutions	to	the	phonon	BTE	under	steady-state	and	
small-signal	a.c.	conditions.		In	this	section,	we	compare	our	Fourier’s	Law	solutions	to	the	
three	steady-state	examples	considered	by	Ordonez-Miranda,	et	al	(OM)	in	Fig.	5	of	their	
paper.		The	three	structures	as	shown	in	Fig.	S11	below.	
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Fig.	S11	 Three	structures	considered	for	steady-state	analysis.		These	are	the	three	

structures	considered	by	OM	in	their	Fig.	5.	
	
Consider	the	semi-infinite	example	of	S11a	first	and	assume	that	

  
FQ 0( ) 	is	a	fixed	heat	

generation	source	at	the	surface.		Fourier’s	Law	gives	
	

  
FQ x( ) = −κ bulk

dT
dx

= FQ 0( ) ,	 	 	 	 	 	 	 	 (S62)	

	
which	can	be	integrated	to	determine	the	temperature:	
	

  

dT
T 0+( )

T x( )

∫ = −
FQ 0( )
κ bulk

d ′x
0+

x

∫ ,	

which	can	be	integrated	to	find	
	

  
T x( )−T 0+( ) = −

FQ 0( )
κ bulk

x .	 	 	 	 	 	 	 	 (S63)	

	
Now	treat	the	surface	as	a	virtual	contact	at	a	temperature,	  T0 	.	Just	inside	the	surface,	
there	is	a	temperature	jump	given	by	
	

  
ΔT 0( ) = T0 −T 0+( ) = FQ 0( ) RB A

2
,	 	 	 	 	 	 	 (S64)	

	
where	  RB A 2 is	given	by	(S29).		From	(S63)	and	(S64),	we	find	
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T x( ) = T0 −

FQ 0( )
CVυx

+ 1+
CVυx

+

κ bulk

x
⎛

⎝⎜
⎞

⎠⎟
.	 	 	 	 	 	 	 (S65)	

	
Using	(S19b)	for	 κ bulk ,	  υx

+ =υ 2 ,	and	 λ = 4Λ 3 ,	we	find	
	

  
T0 −T x( ) = 3FQ 0( )

CVυ
x
Λ
+ 2

3
⎛
⎝⎜

⎞
⎠⎟
,	 	 	 	 	 	 	 	 (S66)	

	
which	is	the	Fourier	Law	solution	for	the	problem	of	Fig.	S11a.		The	analytical	solution	of	O-
M	is	
	

  
T0 −T x( ) = 3FQ 0( )

CVυ
x
Λ
+ p x( )⎛

⎝⎜
⎞
⎠⎟
,	 	 	 	 	 	 	 (S67)	

	
where	
	

  

1
3
= 0.58 ≤ p x( ) < 0.7105 .	 	 	 	 	 	 	 	 (S68)	

	
Comparison	of	(S66)	and	(S67)	shows	the	our	Fourier’s	Law	solution	is	the	O-M	solution	
with	  p x( ) = 2 3 .		The	figure	below	compares	the	two	solutions.	
	

	
Fig.	S12	 Comparison	of	the	Fourier’s	Law	and	O-M	solutions	for	the	problem	of	Fig.	5a	in	

O-M.	
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The	maximum	error	in	the	Fourier’s	Law	solution	occurs	at	  x = 0 .	From	(S66)	and	(S67)	we	
find	
	

  

T0 −T 0( )
FL

T0 −T 0( )
O-M

= 2
3
= 1.155 ,	 	 	 	 	 	 	 (S69)	

	
so	the	maximum	error	is	less	than	16%.		Finally,	we	note	that	the	line	in	Fig.	5a	of	O-M	
labeled	“Fourier’s	Law”	should	be	labeled	“Fourier’s	Law	with	constant	temperature	
boundary	conditions.”	Our	solution,	which	also	assumes	Fourier’s	Law	but	with	
appropriate	boundary	conditions,	is	much	closer	to	the	O-M	solution.	
	
Consider	next	the	example	in	Fig.	S11b,	which	is	the	case	considered	in	Fig.	1a	of	the	paper.		
The	Fourier’s	Law	solution	to	this	problem	is	given	by	eqns.	(16)	and	(17)	in	the	paper:	
	

  
T x( ) = TL − ΔT( ) 1− x

Lx

⎛

⎝⎜
⎞

⎠⎟
+ TR + ΔT( ) x

Lx

⎛

⎝⎜
⎞

⎠⎟
	 	 	 	 	 	 (S70a)	

  
ΔT = 1

2
TL −TR

1+ 3 4Knx( )
⎛

⎝
⎜

⎞

⎠
⎟ =

TL −TR

2+ 3Lx 2Λ( )
⎛

⎝
⎜

⎞

⎠
⎟ .	 	 	 	 	 	 (S70b)	

	
Next,	we	normalize	the	temperature	to	that	it	goes	between	0	and	1:	
	

  
U x( ) = T x( )−TR

TL −TR

=
TL − ΔT( ) 1− x Lx( ) + TR + ΔT( ) x Lx( )−TR

TL −TR

.	 	 	 (S71)	

	
Equation	(S67)	can	be	simplified	to	
	

  
U x( ) = 1− 1− 2 ΔT

TL −TR

⎛

⎝⎜
⎞

⎠⎟
x
Lx

− ΔT
TL −TR

.	 	 	 	 	 	 (S72)	

	
Equation	(17)	relates	the	temperature	jump	to	the	Knudsen	number/mean-free-path	as	
	

  

ΔT
TL −TR

= 1
2+ 3Lx 2Λ( ) .	 	 	 	 	 	 	 	 (S73)	

	
Using	(S73)	in	(S72),	we	find	the	Fourier’s	Law	solution	to	the	problem	of	Fig.	S11b	as	
	

  
U x( ) = 1− x Λ + 2 3

Lx Λ + 4 3
.	 	 	 	 	 	 	 	 (S74)	

	
The	analytical	solution	of	O-M	is	
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U1 x( ) = T x( )−TR

TL −TR

= 1− 1
Lx Λ( ) + 2β

x
Λ
+ β + γ p x Λ( )− p L Λ− x Λ( )( )⎡

⎣
⎢

⎤

⎦
⎥ .	 (S75)	

	
Equation	(S75)	provides	highly	accurate	solutions;	they	agree	with	the	FVM	solutions	
shown	in	Fig.	3a	to	within	2%.	To	relate	the	O-M	solution	to	the	Fourier’s	Law	solution,	
assume	that	 p x( ) 	is	constant	(see	Fig.	3	in	O-M	to	see	how	 p x( ) 	varies).		With	this	
assumption,	(S75)	becomes	
	

  
U1 x( ) = 1−

x Λ( ) + β
Lx Λ( ) + 2β

.	 	 	 	 	 	 	 	 (S76)	

	
We	conclude	that	the	O-M	solution	reduces	to	our	FL	solution	if	 p x( ) 	is	constant	and	if		
  β x( ) = 2 3 	(see	Fig.	4	in	O-M	for	how	 β x( ) 	varies).	
	
Finally,	consider	the	example	in	Fig.	S11c.		As	given	by	(S66),	the	solution	in	the	first	layer	
is		

  
T0 −T x( ) = 3FQ 0( )

CVυ
x
Λ
+ 2

3
⎛
⎝⎜

⎞
⎠⎟
	 	   0 < x < x1 	.	 	 	 	 	 (S77)	

	
From	(S63),	we	find	the	solution	in	the	second	layer	to	be	
	

  
T2 x( )−T2 x1

+( ) = −
FQ 0( )
κ 2

x − x1( ) 	   x > x1 .	 	 	 	 	 	 (S78)	

and	we	just	need	to	find	
  
T2 x1

+( ) :	
	

  
T2 x1

+( ) = T1 x1
−( ) + ΔT = T1 x1

−( )− FQ 0( )RI .	 	 	 	 	 	 (S79)	
	

From	the	above	equations,	we	find	
	

  
T0 −T2 x( ) = 3FQ 0( )

CV 1υ1

CV 1υ1

CV 2υ2

x − x1

Λ2

⎛

⎝⎜
⎞

⎠⎟
+

x1

Λ1

+ 2
3

⎛

⎝⎜
⎞

⎠⎟
+

RICV 1υ1

3
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
	.	 	 	 (S80)	

	
By	defining	a	parameter,		

	

  
δ12 =

CV 1υ1

CV 2υ2

,	 	 	 	 	 	 	 	 	 	 (S81)	

and	assuming	the	same	interface	resistance	assumed	by	O-M,	
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RI =

2
CV 1υ1

+ 2
CV 2υ2

,	 	 	 	 	 	 	 	 	 (S82)	

	
we	find	the	Fourier’s	Law	solution	to	this	problem	to	be		
	

  
T0 −T2 x( ) = 3FQ 0( )

CV 1υ1

δ12

x − x1

Λ2

+ 2
3

⎛

⎝⎜
⎞

⎠⎟
+

x1

Λ1

+ 4
3

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
.	 	 	 	 	 (S83)	

	
The	analytical	solution	of	O-M	is	
	

  
T0 −T2 x( ) = 3FQ 0( )

CV 1υ1

δ12

x − x1

Λ2

+ p x( )⎛

⎝⎜
⎞

⎠⎟
+

x1

Λ1

+ 2β x( )⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
.	 	 	 	 (S84)	

	
The	Fourier’s	Law	result,	(S83),	is	equal	to	the	O-M	result	if	  p x( ) = β x( ) = 2 3 	.	The	figure	
below	compares	the	two	solutions.	
	

	
Fig.	S13	 Comparison	of	the	Fourier’s	Law	and	O-M	solutions	for	the	problem	of	Fig.	5c	in	

O-M.	
	
	
As	the	above	examples	show,	the	Fourier’s	Law	solutions	are	similar	to	the	highly	accurate	
analytical	solutions	of	O-M	et	al.,	but	they	are	not	as	accurate.		Because	Fourier’s	Law	is	
easily	applied	to	a	variety	of	problems	for	which	analytical	solutions	may	not	be	available,	
it	is	useful	to	know	that	Fourier’s	Law	can	provide	approximate	solutions	at	the	nanoscale.	


