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Four-phonon scattering significantly reduces intrinsic thermal conductivity of solids
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For decades, the three-phonon scattering process has been considered to govern thermal transport in solids,
while the role of higher-order four-phonon scattering has been persistently unclear and so ignored. However, recent
quantitative calculations of three-phonon scattering have often shown a significant overestimation of thermal
conductivity as compared to experimental values. In this Rapid Communication we show that four-phonon
scattering is generally important in solids and can remedy such discrepancies. For silicon and diamond, the
predicted thermal conductivity is reduced by 30% at 1000 K after including four-phonon scattering, bringing
predictions in excellent agreement with measurements. For the projected ultrahigh-thermal conductivity material,
zinc-blende BAs, a competitor of diamond as a heat sink material, four-phonon scattering is found to be strikingly
strong as three-phonon processes have an extremely limited phase space for scattering. The four-phonon scattering
reduces the predicted thermal conductivity from 2200 to 1400 W/m K at room temperature. The reduction at
1000 K is 60%. We also find that optical phonon scattering rates are largely affected, being important in
applications such as phonon bottlenecks in equilibrating electronic excitations. Recognizing that four-phonon
scattering is expensive to calculate, in the end we provide some guidelines on how to quickly assess the
significance of four-phonon scattering, based on energy surface anharmonicity and the scattering phase space.
Our work clears the decades-long fundamental question of the significance of higher-order scattering, and points
out ways to improve thermoelectrics, thermal barrier coatings, nuclear materials, and radiative heat transfer.
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Phonons are quasiparticles that quantize lattice vibrations.
They interact with each other through scattering events, with
the most significant scattering processes known as three-
phonon processes. Recently, thermal conductivity (k) calcula-
tions based on density functional theory have found incredible
agreement with measured « values for a variety of systems
and made striking predictions of thermal processes despite
considering only lowest-order perturbative intrinsic scattering
from three-phonon interactions [1-4]. However, a persistent
fundamental question for decades has been the following:
What is the impact of four-phonon and higher-order scattering?
Due to the lack of formalism and computational power,
four-phonon scattering has been ignored in previous studies.
However, this question has become particularly relevant, since
first-principles methods have overestimated the measured
thermal conductivities of a number of materials [2,3,5-7]. For
example, while some predictions give reasonable accuracy
with measured data at low temperatures, they overpredict
significantly at higher temperatures, diminishing the predictive
power for applications such as thermal barrier coatings
and high-temperature thermoelectrics [2]. Moreover, such
deviations can become quite large even at room temperature
(RT) for some technologically important materials such as
¢c-BN [3,5] and SnSe [6,7]. As an example for thermal
management applications, Lindsay et al. have predicted that
the zinc-blende structure, boron arsenide (BAs), may have a
thermal conductivity ~2200 W/m K at room temperature,
higher than the known best heat conductor, diamond [3].
This might open new opportunities for passive cooling and
other thermal management applications. The BAs system has
been synthesized, however, the measured thermal conductivity
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has only reached ~200 W/m K. [8,9]. Extrinsic defects and
grain boundaries are possible causes for this discrepancy, or
higher-order intrinsic scattering may become significant in
determining the upper limit of & in this material.

The prediction of four-phonon scattering has been pursued
for a long time. Lindsay et al. examined the phase space for
four-phonon scattering processes [10]. Turney er al. studied
the fourth- and higher-order anharmonicity of the interatomic
potential of argon, by truncating the potential in molecular
dynamics (MD) simulations [11]. Sapna and Singh estimated
the four-phonon scattering rates in carbon nanotubes using
an analytical model involving approximations such as the
Callaway model, the Debye model, etc. [12]. Despite those
efforts, a direct and rigorous calculation of four-phonon
scattering rates was not available until recently [13]. However,
the anharmonic force constants therein were obtained from
classical force fields, and thus the results are only qualitative
and cannot be validated against experiments. In this Rapid
Communication, we have calculated four-phonon scattering
rates fully from first principles and examined their impact on
the thermal conductivity and optical phonon lifetimes of BAs,
Si, and diamond. We demonstrate that four-phonon scattering
resistance can reduce their predicted thermal conductivities
and optical phonon lifetimes significantly, manifesting the
general impact of four-phonon scattering in solids.

Intrinsic phonon scattering is caused by lattice anhar-
monicity [14]. From perturbation theory, the lowest-order
anharmonic couplings involve three phonons: A single phonon
may split into two phonons, or two phonons may combine
to create a new phonon, as shown in Fig. 1(a). In addition
to these scatterings, second-order anharmonicity gives rise to
four-phonon processes given in Fig. 1(b). The three- and four-
phonon scattering rates for each phonon mode are calculated
by summing up the probabilities of all possible scattering
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FIG. 1. Three- and four-phonon scattering diagrams. (a) Three-
phonon splitting and combination processes. (b) Four-phonon
splitting, redistribution, and combination processes. The shaded
rectangles represent the first Brillouin zone (BZ). The phonon
momentum is /iq with q standing for wave vector. The processes
with momentum conserved are normal processes. The others with
momentum nonconserved are umklapp processes, in which the
resulting phonons are folded back by reciprocal lattice vectors R.

events involving this mode. Each transition probability is
calculated by Fermi’s golden rule from density functional
theory [13]. The computational cost is very high but can
be mitigated as described in our earlier work [13]. See
the Methods and Computational Challenge sections in the
Supplemental Material [15].

We have obtained the scattering rates for each of the 24 576
(870 irreducible) phonon modes in the first BZ discretized by
a 16 x 16 x 16 q mesh from 10 to 1300 K for BAs, Si, and
diamond. The results as a function of phonon frequency at
300 and 1000 K are shown in Figs. 2(a)-2(f). The insets show
the low-frequency behavior. Contradictory to the prevailing
general notion that four-phonon scattering is negligible, we
find that for many frequencies the four-phonon scattering is
comparable to or even much stronger than the lower-order
three-phonon scattering, as highlighted by the blue ovals.

Most surprisingly, the four-phonon scattering in BAs is
quite strong, as shown in Fig. 2(a). This behaves against the
general notion of perturbation theory, in which the strength
of four-phonon scattering is driven by the magnitude of
higher-order terms of the Hamiltonian, which are small in
BAs. The origin of the strong four-phonon scattering in
BAs is illustrated in Fig. 3(a). As shown in Ref. [3], the
number of three-phonon processes is partly restricted by a
large acoustic-optical (a-o0) energy gap, which prevents two
acoustic phonons from combining into an optical phonon
as well as the reverse process since the summation of the
energies of two acoustic phonons cannot reach that of the

RAPID COMMUNICATIONS

PHYSICAL REVIEW B 96, 161201(R) (2017)

optical phonon. This coupling with closely bunched acoustic
branches contributes to weak three-phonon scattering and the
predicted ultrahigh-thermal conductivity in BAs [3]. Further
evidence of this can be found near 21 THz in Fig. 2(a), in
which the three-phonon scattering rates have a deep valley.
These phonons are the optical modes near the I point and
have high energies and small momentums. They can hardly
find two other phonon modes that satisfy energy conservation
and momentum conservation simultaneously. Such a large a-o
gap, however, does not forbid four-phonon processes between
acoustic and optical phonons. For example, at around 21 THz,
the possible number of three-phonon scattering configurations
is smaller than 20 while the number of four-phonon processes
is about 107—10%. For these four-phonon processes, 94% are
q+4q; — q2 +q3 and 6% are q — q; + q» + q3. Therefore,
the optical phonon relaxation time is brutally overpredicted
by the three-phonon picture. When the four-phonon term is
included, the relaxation time is reduced from 10* to 40 ps at
room temperature (see Supplemental Fig. S1 [15]). Since these
optical phonons near the I" point are critical for interactions
with electrons and photons such as in laser heating [16] and
for infrared optical properties [17], the long lifetime predicted
from three-phonon scattering is misleading, while four-phonon
scattering is critical and should be included.

As temperature increases to 1000 K, the four-phonon
scattering of BAs becomes much more important, especially
for phonons with higher frequencies, as highlighted by the
blue ovals in Fig. 2(b). The variations with temperature and
frequencies are shown in Figs. 3(b) and 3(c), from which we
determine the scaling law of four-phonon scattering 7, b~
T?w*. Compared to three-phonon scattering, four-phonon
scattering is more important at higher temperatures and for
higher-energy phonons as the phonon population increases
with temperature and the phase space increases with phonon
energy (frequency). Due to their simplicity, scaling laws are
of great importance in thermal nanoengineering as well. For
example, the power law of three-phonon scattering 7 '~ Tw?
and phonon-defect scattering 7, '~ w* has been widely used
in understanding the experimental thermal conductivity in
advanced thermoelectric materials [18,19].

In the other two materials without phonon band gaps,
Si and diamond, four-phonon scattering is not as strong as
in BAs but certainly not negligible. At 300 K, 7, Uis well
below 75 ! for most of the acoustic phonons. This obeys the
general notion in perturbation theory since the anharmonicity
(the higher-order terms of the Hamiltonian) is small for
Si and diamond. Nevertheless, the optical modes marked
by the blue ovals still have large four-phonon rates, and
this may explain why calculated infrared optical linewidths
considering only three-phonon scattering are narrower than ex-
periments [17,20]. As T increases to 1000 K, four-phonon rates
of the low-frequency phonons remain insubstantial, however,
higher-energy longitudinal acoustic (LA) modes and all the
optical modes exhibit large 7, ! comparable to Ty ! The large
7, ! of the heat-carrying LA phonons will have a substantial
effect on the thermal conductivity of these materials. In all the
materials we note that the low-frequency limits for both three-
and four-phonon scatterings obey the law lim, o7~ ' =0
resulting from translational invariance, indicating the accuracy
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FIG. 2. First-principles three-phonon (black dots) and four-phonon (red dots) scattering rates of BAs, Si, and diamond at 300 and 1000 K.
The insets are in log-linear scales to give a better view of the low-frequency regions. Blue ovals indicate the regions where four-phonon scattering
plays an important role. Green ovals in the insets indicate that our four-phonon results reproduce well the universal law lim,,_., 7~! = 0, which
is a critical mark of the calculation accuracy.

of our four-phonon calculations. The same as that in BAs, the  the high computational cost, the four-phonon scattering rates

power-law fittings for diamond and silicon give 7, U~ ot are computed at the RTA level only and inserted into the
which are shown in Supplemental Fig. S2 [15]. iterative scheme that determines the nonequilibrium phonon

We have also calculated « beyond the relaxation time  distributions from mixing of the three-phonon processes. This
approximation (RTA) by exactly solving the phonon Boltz- is similar to employing phonon-isotope and phonon-boundary

mann transport equation (BTE) using an iterative scheme scattering terms in the full BTE solution [1,21]. We will show
mixing three-phonon interactions [1,3]. In this work, due to that such an approximation is likely valid as four-phonon
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FIG. 3. Impacts of phonon band gap, temperature, and frequency on three- and four-phonon scattering. (a) Three- and four-phonon
processes in BAs. The large energy gap between acoustic and optical phonons forbids three-phonon processes, however, it is not as restrictive
for four-phonon processes. The three-phonon process is dominated by intraband normal scattering, while the four-phonon process is dominated
by inner and interband umklapp scattering. (b) Temperature dependencies of three-phonon and four-phonon scatterings of BAs. The curves
cover all the modes in the BZ, with each curve corresponding to a different mode. (c) Power-law fitting 147' = Aw" of the acoustic phonons
in BAs. The log-linear scale gives a clear view of the low-frequency behavior, while the inserted linear-linear scale is for the view of the
high-frequency behavior.
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FIG. 4. Thermal conductivities of naturally occurring BAs, Si,
and diamond. Dashed lines give calculated «3, while solid lines give
k3+4. Note that these calculations employed the iterative solution of
the BTE, beyond the RTA. Symbols represent measured data: red
triangles [23], red squares [24], red circles [25], blue triangles [26],
blue squares [27], blue circles [28], and blue diamonds [29]. No
experimental data are available for single-crystal BAs.

scattering is dominated by umklapp processes. We also include
phonon-isotope scattering [22] in these « calculations of
naturally occurring materials.

The thermal conductivities « of the naturally occur-
ring materials are shown in Fig. 4. For diamond and
Si the three-phonon predictions agree well with mea-
sured data at low temperature (<600 K for Si, <900 K
for diamond), however, significant deviations from experi-
ment occur at high temperatures. For example, at 1000 K,
three-phonon scattering alone overpredicts « of diamond
and silicon by 31% and 26% as compared to experimental
values, respectively. After including four-phonon scattering,
we find that the predicted thermal conductivity agrees well
with measurements throughout the entire temperature range.
Such a reduction is beneficial for thermoelectrics and thermal
barrier coatings where low thermal conductivities are desired.
As for naturally occurring BAs, even at room temperature,
the thermal conductivity is reduced significantly, from 2241
to 1417 W/m K, after including four-phonon scattering.
As temperature increases to 1000 K, the reduction grows
to over 60%. Nonetheless, the room-temperature intrinsic
thermal conductivity of BAs is still among the highest of
known materials, and much higher than common metals.
Moreover, the well-known temperature scaling x ~ 1/7T at
high temperatures by only considering three-phonon scattering
can now be modified to k ~ 1/(AT 4+ BT?) after adding
four-phonon scattering.

Here, we discuss important physical details regarding four-
phonon scattering processes. More discussions on computa-
tional details can be found in the Supplemental Material, i.e.,
the impact of broadening factors, q meshes, interatomic cutoff
radius, translational invariance, force constant truncation, and
the role of normal and umklapp processes [15].
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TABLE 1. Anharmonicity ratio |®,/®3|>/|®,| to approximate
the relative importance of four-phonon scattering in diamond, Si,
BAs, and CuCl. Units of the representative nth-order force constant
are eV/;&”. The representative force constant values are taken at
D0 0,x,x5 P0,0,0,x,y,2o a0d D¢ 0,0,0.x +,x,«- The index O indicates the origin
primitive cell (see the Supplemental Material for more details [15]).
The third-order ®¢ ¢, r» = 0 due to symmetries cannot be taken as
the anharmonicity.

Material Atom | D,] | D5 | Dy |Dy/D3]%/| Dy
Diamond C 44.2 95.0 224 0.128
BAs B 170 456 657 0.122
Si Si 136 339 508 0.165
CuCl Cu 193  13.1 480 6.956

Estimating the significance of four-phonon scattering. As
discussed above, four-phonon scattering becomes increasingly
important at higher temperatures in all materials; however,
after careful examination of the three materials in this work, a
natural question is as follows: How important is four-phonon
scattering generally in other solids? As with three-phonon
scattering, four-phonon scattering is governed by two factors,
anharmonicity of the energy surface and the scattering phase
space. We note that the construction of both three- and
four-phonon scattering rates is nontrivial, each a complex
interplay of matrix elements, eigenvectors, and frequencies
combining various phonon modes. However, based on the
phonon scattering formalism [13], we attempt to estimate
the relative importance of the fourth-order anharmonicity.
Yue et al. have done some estimations by evaluating the
fourth-order terms in Hamiltonians [30]. Roughly speaking,
the nth-order phonon scattering rate is proportional to 7, !
~ |V, |2 f"72 /" T, where V,, is the nth-order transition matrix
element ~®, /m"/?. ®, is the nth-order force constant, m is
the average atomic mass, and f is the Bose-Einstein distribu-
tion approximated as ~kpT /hiw, high-temperature behavior.
Approximating the frequency as o ~ /®,/m, we get 7, ! ~
|®,|2/mT"=2/|d,|"~/2. Thus, the relative importance of
the nth-order anharmonicity to the third-order anharmonicity
is crudely evaluated as rn’l/r;l ~ | D,/ D3PT 3| Dy |3,
Note that this captures the increasing importance of higher-
order scattering with increasing temperature and only requires
single calculations of a second-, third-, and higher-order
derivative of the potential energy.

Table I gives the relative strength of the fourth-order
anharmonicity (|®4/®3|?/|®,|) for the materials studied in
this work and a low thermal conductivity zinc-blende material,
CuCl (~1 W/m K at room temperature) [31,32]. Note
that the temperature dependence is omitted. This simplistic
formalism is intended to give a rough estimation for when
higher-order scattering may be important in one material over
another. As shown in Table I, the fourth-order anharmonicity
is predicted to be significantly more important in CuCl
than in the high conductivity materials considered here.
Our previous work based on interatomic potentials directly
demonstrated a positive correlation between four-phonon
scattering and anharmonicity [13]. In soft materials, such
as those of interest for thermoelectric and thermal barrier
coating applications [4], atoms can deviate significantly from
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equilibrium to sample higher anharmonicity, and fourth-order
terms in their Hamiltonians can be quite large [30]. Note
that |®4/®3|?/|®,| is higher in Si than in diamond, and
Si also has fourth-order scattering that is relatively more
important.

This simple formalism, however, does not account for the
phase space for three- and four-phonon scattering processes.
Thus, even though the fourth-order anharmonicity is predicted
to be relatively less important in BAs as demonstrated in
Table I, the BAs conductivity is still significantly reduced by
four-phonon scattering resistance (Fig. 4). In materials where
three-phonon scattering is weak due to dispersion features
(e.g., phonon band gap, acoustic bunching [3]) that reduce
the phase space, we expect four-phonon scattering to also be
important, for instance, in BSb [3] and BeSe [33].

In summary, we have rigorously calculated four-phonon
scattering rates and thermal resistance from fully first-
principles methods. Due to the large number of possible
scattering configurations, four-phonon processes play an
important role in determining intrinsic phonon transport.
We find that four-phonon scattering is surprisingly strong
in zinc-blende BAs, and reduces its thermal conductivity
substantially from ~2200 to ~1400 W/m K even at room
temperature when compared to previous calculations. The
room-temperature optical phonon lifetime is reduced from
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10* to 40 ps. These impacts increase substantially with
increasing temperature. Such strong four-phonon scattering
in BAs originates from weak three-phonon scattering that
arises from properties of its phonon dispersion coupled with
fundamental conservation conditions. These conditions do not
as strictly restrict the available scatterings for four-phonon
process. With four-phonon scattering included, the predicted
thermal conductivities of silicon and diamond reduce x by
~30% at high temperatures, and bring the prediction in
agreement with measured data throughout the entire tem-
perature range considered. Based on our findings of the
general and significant impact of four-phonon processes on
thermal transport and optic mode lifetimes, we expect future
predictions of these properties will incorporate this important
scattering mechanism, especially when considering engineer-
ing materials for energy transfer, conversion, and storage
applications.
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Methods

Fermi’s golden rule

The three- and four-phonon scattering rates are calculated by the summations of the
probabilities of all the possible scattering events calculated by Fermi’s golden rule (FGR)
from density functional theory (DFT):

1
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Here A stands for (q, j) with q and j labeling the phonon wave vector and dispersion branch,

0 — (eM/k8T —1)~! is the phonon occupation number, and w is the phonon

respectively. n
angular frequency. The transition probability matrix £ is determined by the third-order and
fourth-order interatomic force constants (IFCs)?.

The expressions for £4 and L4 are given by FGR,
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Ny is the total number of q points. R is a reciprocal lattice vector. The Kronecker deltas

Agtait+ae,r a0d Agiq, +qotqsr describe the momentum selection rule and have the property
that A, = 1 (if m = n), or 0 (if m # n). @g1p7% . and &G4 ., are the third-
and fourth-order force constants, which are calculated from DFT to the 5th and 2nd nearest

neighbor by Quantum Espresso?, respectively. e is the phonon eigenvector. m; is the average



atomic mass at the lattice site b. The delta function 6(Aw) in the calculation of each L is
evaluated by the Lorentzian function %m
The thermal conductivity within the relaxation time approximation (RTA) including both

three-phonon and four-phonon scattering is:
1 2 -1 —1 -1
K3+4RTA,z = % Z Uz,,\CA(Ts,,A,RTA + T4,A,RTA) . (S.9)
A

Here A stands for the phonon mode (q, 7) with j labeling the phonon dispersion branch. V'
is crystal volume, v, is phonon group velocity projection along the transport direction z,
and ¢, is phonon specific heat per mode.

Iterative Scheme: Exact solution to linearized BTE.

For the systems in which the Normal processes dominate over Umklapp processes, an iter-
ative scheme that exactly solve the BTE beyond RTA needs to be employed. The relaxation

time 7, of mode A is obtained as
7x = TarTA(l + ©)), (S.10)

with
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where £y = Uy Wy /Ux Wy, v, is phonon group velocity component along the transport
direction. Equation (S.10) is solved iteratively because both the left and the right hand
sides contain the unknown variable 7, and thus the method is called Iterative Scheme.

From second-order perturbation theory *#, the scattering rate by the isotopes? is given by

. T n
l)fi\)/ = Ww,\w,\: Zgb|el/’\ . eg’\"f|2§(w)\ — w)\/), (813)
¢ b
where
g = fa(1 = ma/my)? (S.14)

characterizes the magnitude of mass disorder, where i indicates isotope types, f;, is the
fraction of isotope i in lattice sites of basis atom b, my, is the mass of isotope i, my is the
average atom mass of basis b sites.
Computational challenge

The large phase space of four-phonon processes and the large dimension of the fourth order

force constant have made the computation extremely challenging. The computational cost



of four-phonon scattering is roughly ~ 107 times of the three-phonon scattering calculation
without special techniques in our cases. To make the calculation practical without losing
accuracy, we have mitigated the computational cost as described in our previous work®.
Even after the mitigation, the computational cost is still 7,000 times of the three-phonon

scattering calculation.



Role of Normal and Umklapp processes

It is instructive to discuss the RTA thermal conductivities for isotoptically pure materials
to isolate the impact of four-phonon scattering to the intrinsic resistance and examine the
sensitivity of k to the broadening parameters. As expected, the k3 grra and K3i4prra agree
well at low temperature, while deviations of these occur at high temperature and increase
linearly with temperature as seen in Fig. S3. The broadening factors from the lower bound
(0.05 THz) to the upper bound (0.25 THz) in calculating the four-phonon scattering rates
give little variation in x for all temperatures. Our kzgra of silicon is also compared to

the calculated results in the literature %7

as well as those by ourselves via different DFT
packages ®? to validate its reliability.

The difference between iterative and RTA thermal conductivities comes from subtle dif-
ferences in Normal and Umklapp processes. Umklapp processes provide thermal resistance,
degradation of a flowing distribution of phonons. Normal processes do not degrade the over-
all current but play the important role of redistributing thermal energy amongst the various
modes in the system. If Normal processes dominate over Umklapp processes, the RTA so-
lution does not accurately represent x as it treats Normal processes as purely resistive and
underestimates x'°. We find that three-phonon scattering is dominated by Normal processes
in diamond and BAs, not so in Si, as seen in Fig. S4. Thus, diamond and BAs require an
exact solution for three-phonon scattering'®. As for four-phonon scattering, we find that
Umklapp processes strongly dominate over Normal processes for all three materials. Thus
treating the four-phonon scattering at the RTA level within the iteration scheme is likely a
good approximation.

Translational invariance and interatomic truncation
Numerical uncertainties lead to small violations in crystal invariance constraints that

can lead to significant deviations in calculated !

Translational invariance (TT) is thus
enforced for all sets of force constants, 2°¢, 3" and 4'" order. In the calculation of scattering
matrix, the truncation of IFCs may significantly reduce the computational cost, but it
can break the enforced TI to some extent. We find that a small break of TI, e.g., the
truncation at 3rd-IFCs<0.001 eV/A% and 4th-TFCs<0.1 eV/A*, can only affect the low
frequency scattering rates by overestimating them, while other higher frequency phonons
are little affected. Examples of the four-phonon scattering for Si and BAs are shown in
Fig. S5. The truncation of IFCs breaks the TI conditions and consequently deviates from

the law: lim,_ 07 ' = 0. The impacts on higher energy phonons and the overall thermal

conductivity are small. In the results presented in this paper, we strictly enforce the TI



conditions and include all the IFCs values without truncation to ensure the accuracy of
prediction.
Broadening factors, g-meshes and force constant cutoff radius

The convergence issue is critical for phonon scattering and thermal conductivity calcula-
tions. The four-phonon scattering calculation has been examined towards different broad-
ening factors and g-meshes to ensure its accuracy. The results are in consistency for all
the cases as seen in Fig. S6. Also, we have checked the convergence towards the 4th order
force constant cutoff radius. In contrast to three-phonon scattering which does not converge
until the 5th nearest neighbor, we find that the four-phonon scattering rates converge at
the 2nd nearest neighbor. When the cutoff radius of fourth order force constants increases
from the 2nd to the 3rd nearest neighbors, only the very-low-energy phonons’ four-phonon
scattering rates are slightly affected while all the others remain the same. The change of

thermal conductivity is less than 1%.
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FIG. S1: Optical phonon lifetime near the I' point as a function of temperature of BAs.
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FIG. S2: Power law fitting 7';1 = Aw" of the acoustic phonons in diamond and Si. Each
panel is plotted in log-linear scale to give a clear view of the low frequency behavior, while the
inset is in linear-linear scale for a clearer view of the high frequency behavior. a and b are the
TA and LA modes of diamond at 1000 K, respectively. ¢ and d are the TA and LA modes of Si
at 1000 K, respectively. We note that four-phonon scattering is only important for diamond and
Si at higher temperatures. For each of a, b and ¢, we have two fitting curves: the red one (lower
power) fits better the low frequency behavior, while the yellow curve (higher power) fits better in

the higher frequency range.
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T=300K. Each panel is plotted in linear-linear scale, while each inset is in log-linear scale.
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