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A B S T R A C T

This work provides a comprehensive investigation on the spectral phonon properties in

graphene nanoribbons (GNRs) by the normal mode decomposition (NMD) method, consid-

ering the effects of edge chirality, width, and temperature. We find that the edge chirality

has no significant effect on the phonon relaxation time but has a large influence to the pho-

non group velocity. As a result, the thermal conductivity of around 707 W/(m K) in the

4.26 nm-wide zigzag GNR at room temperature is higher than that of 467 W/(m K) in the

armchair GNR with the same width. As the width decreases or the temperature increases,

the thermal conductivity reduces significantly due to the decreasing relaxation times. Good

agreement is achieved between the thermal conductivities predicted from the Green–Kubo

method and the NMD method. We find that optical phonons dominate the thermal trans-

port in the GNRs while the relative contribution of acoustic phonons to the thermal con-

ductivity is only 10.1% and 13% in the zigzag GNR and the armchair GNR, respectively.

Interestingly, the ZA mode is found to contribute only 1–5% to the total thermal transport

in GNRs, being much lower than that of 30–70% in single layer graphene.

� 2015 Elsevier Ltd. All rights reserved.
1. Introduction

Graphene [1], one of the most important allotropes of carbon,

has attracted increasing academic interest due to its unique

two-dimensional structure and prominent thermal, mechan-

ical and electrical properties. Graphene is a promising mate-

rial for thermal management of future nanoelectronic

devices due to its high thermal conductivity of 3000–

5000 W/(m K) at room temperature [2–6]. It is reported that

graphene is one of the hardest nanomaterials [7]. In addition,

graphene has an exceptionally high room-temperature car-

rier mobility, ranging from 15,000 to 27,000 cm2/(Vs) [8–10],

which may lead to new applications in carbon-based
electronic and magneto-electronic devices. Graphene

nanoribbons (GNRs), whose structures are tunable by chang-

ing the edge, length and width, inherit many excellent prop-

erties of graphene, and may be used to accomplish a

specific goal, such as enhancing the thermoelectric figure of

merit [11] and the thermal rectification [12]. From a practical

point of view, these outstanding thermal and electronic prop-

erties indicate that GNR is a promising material for microelec-

tronic and thermal management in micro-nano devices and

circuits.

Since heat dissipation is a crucial issue for the microelec-

tronic industry, the thermal properties of GNRs have attracted

much attention. Guo et al. [13] investigated the thermal

http://crossmark.crossref.org/dialog/?doi=10.1016/j.carbon.2015.06.008&domain=pdf
http://dx.doi.org/10.1016/j.carbon.2015.06.008
mailto:caoby@tsinghua.edu.cn
mailto:ruan@purdue.edu
http://dx.doi.org/10.1016/j.carbon.2015.06.008
http://dx.doi.org/10.1016/j.carbon.2015.06.008
http://dx.doi.org/10.1016/j.carbon.2015.06.008
www.sciencedirect.com
http://www.elsevier.com/locate/carbon


916 C A R B O N 9 3 ( 2 0 1 5 ) 9 1 5 – 9 2 3
conductivity of GNRs with different edge chirality, length,

width, and tensile strain using nonequilibrium molecular

dynamics (MD) method. Evans et al. [14] studied the effect

of edge roughness and hydrogen termination on the thermal

conductivity based on the equilibrium MD (EMD). Hu et al. [15]

tuned the thermal conductivities of GNRs by edge-passivation

and isotope mixture with the aid of MD simulations. In addi-

tion, extensive theoretical predictions and experimental mea-

surements have also been carried out. Muñoz et al. [16]

studied the dependence of the thermal conductivity of GNRs

on the temperature, length and width based on an elastic-

shell-based theory. Murali et al. [17] used electrical self-

heating to experimentally measure the thermal conductivi-

ties of GNRs. Their work showed that GNRs have relatively

high and tunable thermal conductivities.

However, to the best of our knowledge, the spectral phonon

properties of GNRs have not been studied. Phonons are the

main thermal energy carriers for heat conduction in crystals,

such as graphene, diamond, etc. The study on the phonon

properties of GNRs can provide an insightful understanding

of heat conduction in GNRs, and help us to control and tune

the heat conduction. Among the phonon properties, phonon

relaxation time is an important one, which can be used to esti-

mate the thermal conductivity of a single phonon mode.

Raman scattering [18,19] is a common experimental method

to measure the relaxation time of a specific mode, but it is only

available for limited phonon modes. Aksamija et al. [20] stud-

ied phonon–phonon, phonon-isotope, and edge roughness

scattering in GNRs by solving the phonon Boltzmann trans-

port equation (BTE) under relaxation time approximation.

However, they analyzed the phonons in GNRs based on the

dispersion relations of bulk graphene, which are different

from those in GNRs especially narrow GNRs. Therefore, it is

necessary to study the phonon thermal properties of GNRs

based on their own phonon dispersions.

Normal mode decomposition (NMD) is an effective

method, which was first introduced by Ladd et al. [21] to ana-

lyze the phonon properties of a face-centered cubic crystal

with an inverse twelfth-power interatomic potential. Then, it

enjoyed great development owing to the efforts from

McGaughy and Kaviany [22–24]. To calculate the normal mode

of each phonon, the atomic positions from an MD simulation

are transformed into the normal mode coordinates. Then, the

kinetic and potential energy of each phonon mode are

obtained based on it. This method has been successfully used

in argon [23], silicon [25], carbon nanotubes (CNTs) [26], gra-

phene [27,28], and others [29]. Therefore, we apply this tech-

nique to calculate the spectral phonon properties of GNRs,

including dispersion relations, phonon relaxation times, heat

capacities, etc. The effect of the width, edge chirality, and tem-

perature on the phonon properties are investigated in detail.

2. Theory and methodology

2.1. Interatomic potential model

The atomic interactions in GNRs are described by the Brenner

potential [30], which has been widely applied to hydrocarbon

materials [31,32]. Lindsay et al. [33] optimized the parameters
of Brenner potential model and obtained closer thermal con-

ductivity of graphene sheet as compared with experiments.

Here, we still used the original parameters, since the general

tendencies of the main properties, i.e. dispersion, relaxation

time, density of states etc, are not affected by the parameter

selection. The Brenner potential is written as

U ¼
X

i

X
j>i

fðrijÞ½VRðrijÞ � �bijVAðrijÞ�; ð1Þ

in which VR and VA are the repulsive and attractive parts of

the pairwise binding potential, respectively, and are

expressed as

VRðrijÞ ¼
D

S� 1
exp½�b

ffiffiffiffiffiffi
2S
p
ðrij � ReÞ�; ð2Þ

VAðrijÞ ¼
DS

S� 1
exp½�b

ffiffiffiffiffiffiffiffi
2=S

p
ðrij � ReÞ�; ð3Þ

in which D, S and b are interaction parameters, Re is the

atomic distance at zero potential, and f(rij) is the truncation

function that explicitly restricts the interaction within the

nearest neighbors. The bond order parameter �bij implicitly

contains many-body information. Detailed parameters are

provided in Ref. [30].

The force constants are derived from the potential energy,

which is used in the calculation of phonon dispersion rela-

tions. As the precondition of the NMD method, the phonon

dispersion relations give important information of lattice

vibrations, such as group velocity and density of states

(DOS). The force constant matrix [34] is shown in Table 1. It

has been proved that interactions of the first four layer inter-

actions are enough to get high accuracy [34]. Fx, Fy and Fz refer

to radial, transverse in-plane and transverse out-of-plane,

respectively.

We calculate the dispersion relations varying with the chi-

rality. For GNRs, the definition of chirality is exactly the same

with CNTs, but the atomic number of each primitive cell is

different due to the boundary conditions [35]. For instance,

there are 22 atoms in a GNR (5,0) primitive cell, while only

20 atoms in CNT (5,0) primitive cell. In this paper, we will

focus on how the edge and width impact the phonon proper-

ties, so we investigate the phonons in GNR (5,0), (17,0) and

(10,10). The first two are armchair GNRs with different width,

and (10,10) belongs to zigzag GNRs with the similar width as

(17,0).

2.2. Lattice dynamics

Phonons are quantized vibrational energy of lattices, so the

phonon dispersion relations can be obtained by the lattice

dynamics. The atomic motion of the lth atom in the kth cell

is described as,

mb
d2ul;k

dt2 ¼ �
Xs;NT

l;k

Fðlk;l0k0 Þul;k; ð4Þ

where mb is the atomic mass, t is the time, u is the atomic dis-

placement, NT is the total number of primitive cells, s means

the atomic number in each cell, and F is the force constant.

The diagonal parameters of the matrix of force constant are

shown in Table 1. Eq. (4) has the lattice wave solution,



Table 1 – Force constant parameters for graphene in units of 104 dyn/cm.

Layer 1 2 3 4

Parameters

Fx = 36.5 Fx = 8.8 Fx = 3 Fx = �1.92
Fy = 24.5 Fy = �3.23 Fy = �5.25 Fy = 2.29
Fz = 9.82 Fz = �0.4 Fz = �0.15 Fz = �0.58
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ul;k ¼ Ak expfi½q � r0ðl;kÞ� � 2pmtg; ð5Þ

in which q is the wave vector, A is the amplitude, r0 refers to

the equilibrium position, and m is the frequency. Then, we

substitute Eq. (5) into Eq. (4) and obtain:

x2
q;jeq;j ¼ Deq;j; ð6Þ

where j means the polarization branch, D is the dynamical

matrix, and e is the polarization vector. There are 3 · s

branches in the dispersion relations. q and j can determine

a unique phonon mode. D is obtained from the force constant

matrix as listed in Table 1. The eigenvalues of D are the pho-

non frequencies, while the eigenvectors are the polarization

vectors. By solving Eq. (6), we can get the relations between

m and q, i.e. phonon dispersion relations. We obtained the

DOS based on the dispersion relations by dividing the fre-

quency range into many small segments and counting the

number of states in each segments. The group velocity is

vg ¼
@x
@q

: ð7Þ

According to the BTE, the total thermal conductivity of lattice

vibrations can be modeled as

k ¼
X

j

X
q

cq;jv
2
gðq;jÞsq;j; ð8Þ

where c means the heat capacity and s is the relaxation time.

2.3. Normal mode decomposition

The normal mode Q is expressed as

Qq;j ¼
ffiffiffiffiffiffiffi
mb

NT

r X
a

Xs

k

eaðk;q;jÞ
XNT

l

uaðl;kÞ exp½iq � r0ðl;kÞ�
( )

; ð9Þ

where a is the direction in Cartesian coordinate. Our former

work [36] has shown that this formalism is equivalent to

the version that does not use eigenvectors. The influence of

a phonon is reflected in all the atomic vibrations, the vibra-

tion of an atom in turn has the contributions from all the pho-

nons. The kinetic and potential energy of a single phonon

mode are expressed as

Ep ¼
x2Q�Q

2
; ð10:aÞ

Ek ¼
Q
�
� Q
�

2
; ð10:bÞ
E ¼ Ek þ Ep; ð10:cÞ

where Ep, Ek, E are the potential, kinetic and total energy,

respectively. The superscript ‘‘*’’ means complex conjugate

and ‘‘•’’ refers to derivation. It should be noted that the fre-

quency of the energy is twice that of the normal mode Q the-

oretically because of the mathematic relationship. The

phonon relaxation time is deduced by using the exponential

function to fit the heat current autocorrelation function

(HCAF) of the total energy,

expð�t=sÞ ¼ < dEðtÞdEð0Þ >
< dEð0ÞdEð0Þ > ; ð11Þ

in which d refers to the deviation from the mean value.

The calculation of relaxation times is carried out in EMD

simulations. The region is a two-dimensional plane, which

has a periodic boundary along the length. We have studied

the size effect in our former work [27], and find that

24.6 nm is large enough to eliminate the size effect. Firstly,

the system is set up to the designated temperature by the

NVT ensemble with the Nose–Hoover thermostat [37] for

200,000 steps. The time step is 0.5 fs. Then, it evolves in a

NVE ensemble for the next 5,200,000 steps, in which the first

200,000 steps are used to eliminate the influence of canceling

the thermostat, while the next 5,000,000 steps to record the

atomic coordinates and velocities. Combining the atomic

information with the dispersion relations, the time-varying

normal mode of a specific phonon is obtained. Then, the

potential and total energy are calculated based on Eq. (10).

3. Results and discussion

3.1. Dispersion relations of graphene nanoribbons

We firstly show the dispersion curves of (5,0), (17,0) and

(10,10) in Fig. 1, whose primitive cells have 22, 70 and 41

atoms, with width of 1.23, 4.18 and 4.26 nm, respectively.

There are 66, 210 and 123 polarization branches in Fig. 1(a)–

(c), respectively, with three acoustic modes, i.e. longitudinal

acoustic mode (LA), transverse acoustic mode (TA) and out-

of-plane acoustic mode (ZA), and the optical branches. It

shows that the phonon frequencies in the two armchair

GNRs have similar tendencies. The dispersion relations of

(10,10) are different from the two armchair GNRs and gener-

ally owning high slopes.
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Fig. 1 – Dispersion relations of (a) (5,0), (b) (17,0) and (c) (10,10) GNRs with the normalized wave vector.
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The phonon group velocity, which is one of the most

important parameters that determine the thermal conductiv-

ity, can be extracted from the dispersion relations by differen-

tiation. Whereas the acoustic branches are representative and

play a major role in heat conduction, so we only give the

group velocities of the three acoustic branches below.

Table 2 shows the group velocities at the center of the first

Brillouin Zone (BZ). The two armchair GNRs have similar

group velocities for all the three acoustic branches, while

the zigzag GNR has higher velocities in the LA and TA

branches and lower velocities in ZA mode which is only

1.1 km/s. The ZA branch, or flexural mode, has the lowest

group velocities in GNRs as well as in graphene [2,29] due to

its quadratic dispersion. Fig. 2 gives the acoustic group veloc-

ities of the full wave vector space. The ZA branches in the two

armchair GNRs almost coincide and higher than that of the

zigzag GNR. The two armchair GNRs also own similar group

velocities in the TA branches, while in the armchair GNR

the group velocity of TA branch is high at the center of BZ

and decreases sharply as approaching to the boundary of

BZ. It should be noted that the TA branch of the zigzag GNR

has a reversal trend, which drops to zero in midway, then

goes up. It is due to the derivative of the dispersion is negative

in the latter half space, while the group velocities should be

changed into absolute value. In general, the ZA branches have

the lowest group velocities in most cases, and all of the acous-

tic branches can reduce to zero at the BZ edge.
Table 2 – Group velocities of the three acoustic branches at
the zero point (units: km/s).

ZA TA LA

(5,0) 7.9 9.6 16.7
(17,0) 7.9 9.1 17.4
(10,10) 1.1 12.6 20.1
3.2. Relaxation times of graphene nanoribbons

To clarify the NMD method, Fig. 3 shows the time-varying

HCAFs of the potential and total energy. In this case, the pho-

non frequency is 37.6 THz existing in the armchair GNR. The

attenuation of HCAFs of the potential and total energy as

shown in Fig. 3(a). Two points should be noted. First, the

HCAFs of both potential and total energy have a 95% drop in

only a few picoseconds. Second, the potential energy curve

declines in a oscillating way, while the total energy curve

almost coincides with the outline of the former. In fact, it

reflects the transformation between potential and kinetic

energies. While the kinetic energy reduces to zero, the poten-

tial energy increases to the total energy. Fig. 3(b) shows the

partial enlarged view of the potential energy curve. The curve

oscillates at a frequency of 72.5 THz, which is nearly twice the

phonon frequency 37.6 THz. Fig. 3(c) uses the exponential
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function to fit the total energy curve. The relaxation time s is

0.772 ps and the standard error is 0.00976.

Fig. 4 presents the frequency-dependent relaxation times

of GNRs (5,0), (17,0) and (10,10) at room temperature in loga-

rithmic scale. An extra case of 1000 K is studied for GNR

(10,10) to investigate the effect of the temperature. The pho-

non relaxation time generally decreases with increasing fre-

quency. From the comparison of (a) and (b), we can see that

narrower width gave lower phonon relaxation times.

Fig. 4(b) and (c) show a similar order of phonon relaxation

time. The relaxations of (10,10) have a significant drop while

the temperature increases from 300 K to 1000 K in Fig. 4(c). To

explain these phenomena, we introduce the theoretical

model of phonon relaxation times [20,38],

1
s
¼ 1

sU
þ 1

sB
; ð12Þ

in which sU and sB, respectively, refer to the relaxation times

of U-process and boundary scattering. For the U-process scat-

tering, it is expressed as

1
sU
¼ �hc2

mbv2
gH

x2T exp � H
3T

� �
; ð13Þ

and for the boundary scattering, we have
1
sB
¼ vg

W
1� p
1þ p

; ð14Þ

here c means the Grüneisen parameter, H is Debye tempera-

ture, W is the width and p refers to the specularity parameter

of the boundary. The specularity parameter of zigzag GNRs is

larger than that of armchair GNRs [20]. The equations show

that the reciprocal of the relaxation time is proportional to

the square of the frequency if the group velocity hold keeps

constant and there is no boundary scattering. So, we add

the curve ‘‘1/s / m2’’ in Fig. 4(a)–(c) to compare with the actual

trends, which is called ‘‘ideal curve’’ for an illustrative pur-

pose. The comparisons indicate that Fig. 4(a) deviates most

from the ideal curve, while in the Fig. 4(b) and (c), the low-

frequency parts are relatively close to the ideal curve. The

boundary scattering model can well explain the behaviors

in Fig. 4(a)–(c). Eq. (14) suggests that the smaller width can

lead to the stronger boundary scattering, resulting in the

decrease of the relaxation time and the deviation from the

ideal curve.

3.3. Heat capacities of graphene nanoribbons

The heat capacity can be obtained from the lattice dynamics

analysis,

cðxÞ ¼ �hx
V

@f 0

@T
DOSðxÞ; ð15aÞ

f 0 ¼
kBT
�hx

; ð15bÞ

cðxÞ ¼ kB

V
DOSðxÞ; ð15cÞ

where f0 is the Boltzmann distribution. Fig. 5 shows the DOS,

which is deduced from the dispersion relations, of GNRs (5,0),

(17,0), (10,10) and the single-layer graphene. For the zigzag

GNR (10,10), few phonon modes are excited in the range of

25–35 THz, and it has similar peaks with graphene.

Generally, the DOS of GNRs are different with that of single-

layer graphene.

The frequency-dependent heat capacities of phonons are

shown in Fig. 6. For classical mechanics system, heat capacity

is temperature-independent and proportional to DOS. The

phonons with high heat capacity gather in the high-

frequency area. Phonons with frequency around 30 THz and

lower than 5 THz have extremely low heat capacities. GNRs

(5,0) and (17,0) have lower heat capacities in low-frequency

region compared to that of GNR (10,10).

3.4. Thermal conductivities of graphene nanoribbons

In Fig. 7, we show the thermal conductivity accumulation

with respect to frequency for the GNRs. At 300 K, the thermal

conductivities of GNRs (5,0), (17,0) and (10,10) are respectively

219, 467 and 707 W/(m K), respectively, which are much lower

than the thermal conductivity of graphene [3] because of the

strong size effect. With the similar widths, zigzag GNRs per-

form better than armchair GNRs in heat conduction, which

agrees with the literature [10–12,20]. In addition, the influence

of the edge reflects on the contributions ratio of different pho-

nons. In Fig. 7, the thermal conductivity saturates at after
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20 THz for GNRs (5,0) and (17,0) and 35 THz for GNR (10,10),

indicating the relative contribution of the high-frequency

phonons in zigzag GNRs is larger than that in armchair

GNRs due to the higher group velocities in high-frequency

region. The smaller width leads to the lower thermal conduc-

tivity due to the stronger boundary scattering by comparing

the thermal conductivity of GNR (5,0) to that of GNR (17,0).

As the temperature increases to 1000 K, the thermal
conductivity of GNR (10,10) is reduced to 248 W/(mÆK) due to

the significant decrease of the relaxation times.

Fig. 8 shows the relative contribution of acoustic phonons

to the thermal conductivity. At 300 K, the ratios of ZA, TA, LA

and the sum are 4.4%, 10.8%, 11.5% and 26.7% for (5,0); 1.9%,

5.3%, 5.8% and 13% for (17,0); 1.2%, 3.9%, 5.0% and 10.1% for

(10,10). The LA phonons contribute the most and ZA modes

contribute the least. The LA modes have the most relative
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Fig. 6 – Phonon heat capacities of (5,0), (17,0), (10,10).
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contribution, which are 11.5%, 5.8%, and 5.0% for GNRs (5,0),

(17,0) and (10,10) respectively, while the relative contribution

of the ZA modes is the least, which are 4.4%, 1.9% and 1.2%

respectively. This illustrates a striking contrast to the single
layer graphene, in which the ZA mode was found to con-

tribute 30–70% to the total thermal conductivity using differ-

ent approaches [6,29]. The total ratio of acoustic phonons in

(10,10) is smaller than in (17,0), and the ratio increases with

the decreasing width. The lowest contribution of ZA phonons

is due to the group velocity. As shown in Fig. 2, the ZA

branches have the lowest group velocities in most region. It

has been reported that ZA modes contribute the most in sus-

pended graphene due to the large DOS [6,39,40]. The DOS of

ZA phonons in GNRs has no obvious advantages compared

to that of other modes, so the contribution ratio of ZA pho-

nons in GNRs is much less than that in graphene. Because

of the boundary effect, the primitive cell of GNR has more

atoms than that of graphene. As a consequence, many acous-

tic phonons convert into optical phonons, and the contribu-

tion of acoustic phonons significantly decreases. There are

63, 207 and 120 optical branches in (5,0), (17,0) and (10,10)

primitive cells, respectively. Hence, it is no surprise that the

acoustic phonons in (5,0) have a larger contribution ratio than

those in (17,0). Though (10,10) has less optical branches than

(17,0), the optical phonons in (10,10) still play more significant

role than in (17,0). Because the optical phonons in (10,10)

have higher group velocities, the optical phonons still make

a relatively high contribution to heat conduction, which is

consistent with the results in Fig. 7. At 1000 K, the contribu-

tion of the acoustic phonons in (10,10) has a further decline,

which drops to 7.9% from 10.1%. With the temperature

increasing, the heat capacities of the optical phonons

increase much more than those of the acoustic phonons,

which enhances the contribution from the optical phonons.

To verify the accuracy of the NMD results, the thermal con-

ductivities of GNRs (17,0) (10,10) at 300 K are calculated by

using the Green–Kubo method, which has been widely used

in predicting thermal properties [30,41,42]. The Green–Kubo

formula is expressed as

k ¼ 1

3VT2kB

Z 1

0

hJðtÞ � Jð0Þidt; ð16Þ

in which < > indicates the ensemble average. J(t) is the heat

current flux in the system at t moment, which is calculated

based on the formulation in Ref. [43]. The system length
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24.6 nm can make sure the elimination of the size effect.

Actually, this size effect in EMD is different from that caused

by the ballistic-diffusive transport [44] in underlying physical

mechanism. Fig. 9 shows the attenuation curve of <J(t)J(0)>

and the integral results of the thermal conductivity. The

curves of <J(t)J(0)> rapidly reduce to around zero in 20 ps

and 10 ps, while their integrations saturate at around 80 ps

and 50 ps for GNR (17,0) and (10,10), respectively. It shows

that the thermal conductivities of GNRs (17,0) and (10,10)

are around 430 W/(m K) and 645 W/(m K) at 300 K, which are

close to our NMD results, and slightly higher than the litera-

ture values of 400 W/(m K) and 600 W/(m K) [45] using the

same method.

4. Conclusion

The spectral phonon thermal properties of GNRs (5,0), (17,0)

and (10,10) are investigated at 300 K, while for (10,10) also at

1000 K. The first two are armchair GNRs with different widths,

and the last one is a zigzag GNR with a similar width as (17,0),

aiming to reveal the effects of edge, width and temperature.

First, lattice dynamics is used to calculate the dispersion rela-

tions, which are used to deduce the group velocities, DOS and

heat capacities. Then, the frequency-dependent relaxation
times are obtained based on the NMD method. Finally, the

spectral thermal conductivities are predicted with the above

results based on the Boltzmann transport equation.

The dispersion relations of the two armchair GNRs have

similar trends, which vary steeply at low frequencies but

slowly in the high-frequency region. In contrast, the disper-

sion relations of (10,10) are different, with relatively high

slopes at high frequencies. Therefore, the zigzag GNRs have

higher group velocities than the armchair GNRs, especially

in the high-frequency region.

The relaxation times of (5,0) are lower than that of the

other two GNRs, suggesting that the width has effects on

the relaxation times due to strong boundary scattering.

Comparing the results of (17,0) and (10,10), it is found that

there is no obvious difference, which indicates that the edge

chirality has little effect on the relaxation times. The relax-

ation times of (10,10) have a significant drop at 1000 K, indi-

cating that the high temperature remarkably reduces the

relaxation times.

The estimated thermal conductivities are 219, 467 and

707 W/(m K) at 300 K for (5,0), (17,0) and (10,10). Hence, under

the same width, the GNRs with the zigzag edge have higher

thermal conductivities than those with the armchair edge.

Moreover, the relative contribution of acoustic phonons in

zigzag GNRs is lower than that in armchair GNRs. In (10,10),

the acoustic phonons contribute 10.1% to the thermal con-

ductivity, compared to 13% in (17,0). The thermal conductivity

of (5,0) is much less than that of (17,0), which confirms to the

influence of the width on the relaxation times. When the

temperature increases to 1000 K, the thermal conductivity of

(10,10) reduces to 248 W/(m K), and the contribution ratio of

the acoustic phonons is down to 7.9%.
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