
Nano Energy 69 (2020) 104428

Available online 28 December 2019
2211-2855/© 2019 Elsevier Ltd. All rights reserved.

Machine learning maximized Anderson localization of phonons in 
aperiodic superlattices 

Prabudhya Roy Chowdhury a, Colleen Reynolds b,1, Adam Garrett a, Tianli Feng c, 
Shashishekar P. Adiga b,**,2, Xiulin Ruan a,* 

a School of Mechanical Engineering and the Birck Nanotechnology Center, Purdue University, West Lafayette, IN, 47907-2088, USA 
b Lockheed Martin Advanced Technology Laboratories, 3, Executive Campus, Cherry Hill, NJ, 08002, USA 
c Building Technologies Research and Integration Center, Energy and Transportation Science Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA   

A R T I C L E  I N F O   

Keywords: 
Random multilayer 
Anderson localization 
Thermal conductivity 
Machine learning 
Molecular dynamics 

A B S T R A C T   

Nanostructuring materials to achieve ultra-low lattice thermal conductivity has proven to be extremely attractive 
for numerous applications such as thermoelectric energy conversion. Anderson localization of phonons due to 
aperiodicity can reduce thermal conductivity in superlattices, but the lower limit of thermal conductivity remains 
elusive due to the prohibitively large design space. In this work, we demonstrate that an intuition-based manual 
search for aperiodic superlattice structures (random multilayers or RMLs) with the lowest thermal conductivity 
yields only a local minimum, while a genetic algorithm (GA) based approach can efficiently identify the globally 
minimum thermal conductivity by only exploring a small fraction of the design space. Our results show that this 
minimum value occurs at an average RML period that is, surprisingly, smaller than the period corresponding to 
the minimum SL thermal conductivity. Above this critical period, scattering of incoherent phonons at interfaces 
is less, whereas below this period, the room for randomization becomes less, thus putting more coherent phonons 
out of Anderson localization and causing increased thermal conductivity. Moreover, the lower limit of the 
thermal conductivity occurs at a moderate rather than maximum randomness of the layer thickness. Our machine 
learning approach demonstrates a general process of exploring an otherwise prohibitively large design space to 
gain non-intuitive physical insights.   

1. Introduction 

The design and discovery of nanostructured materials with targeted 
thermal transport properties has become increasingly important in 
various applications such as thermal management of electronic chips 
and batteries [1,2], thermal interface materials [3,4], thermal barrier 
coatings [5,6] and thermoelectrics [7]. For example, high 
figure-of-merit thermoelectric devices require ultra-low thermal con
ductivity materials without significantly reduced electrical conductivity. 
Several methods have been investigated to reduce thermal conductivity 
by increasing phonon scattering using isotopes [8,9], defects [10,11] 
and grain boundaries [12]. In the past few decades, multilayer phononic 
structures such as binary superlattices (SLs) have gained widespread 
attention due to their potential for low thermal conductivity caused by 

increased interface scattering [13–16]. The thermal conductivity of SLs 
exhibits a minimum with variation of superlattice period, which has 
been observed in many numerical studies [17–21] and confirmed in 
some experimental investigations [13,22–25]. 

Recently, it has been predicted that the minimum thermal conduc
tivity can be further suppressed by randomizing the SL layer thicknesses 
[26–29], which introduces phase-preserving scattering mechanisms 
leading to coherent phonon localization. Wang et al. [27] formulated a 
two-phonon model to decompose the thermal conductivity of SLs and 
RMLs into coherent and incoherent phonon contributions. Moreover, 
the influence of parameters such as bond strength [28], interface 
roughness [28,30,31] and isotopic modulation [32] on the thermal 
conductivity of multilayer structures has also been investigated. More 
recently, evidence of localization of coherent phonons in disordered 
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graphene phononic crystals was shown by Hu et al. [33], while Juntunen 
et al. [34] provided a spectral description of the frequency-dependent 
phonon localization lengths in Si/Ge RML systems. We note that in 
many of the above studies, the variation in thermal conductivities of 
RMLs arising from independently generated random structures was not 
elucidated. In contrast, Ju et al. [35] observed a significant spread in 
thermal conductivities of Si/Ge RMLs with different distributions of 
layer thickness, even at the same average period and composition ratio. 
Their results indicate that such structural parameters give rise to a very 
large design space, yet their effect on the lower limit of RML thermal 
conductivity has not been resolved. An optimization study within this 
design space will enable us to obtain a more fine-grained tunability of 
thermal conductivity as well as gain insight into the underlying physics 
of phonon transport in RML structures. 

The selection of experiments and simulations for materials discovery 
and property engineering has traditionally been guided by the domain 
knowledge of researchers in the relevant field. However, such intuition- 
based explorations, combined with prohibitively large design spaces, 
may preclude the discovery of low-probability-of-occurrence novel so
lutions which show counter-intuitive trends. Recently, metaheuristics 
and machine learning-based methods have increasingly been used to 
accelerate the exploration of new materials with targeted properties [36, 
37], prediction of material structures [38,39] and optimization of 
nanostructure geometry [35,40,41]. The availability of specialized 
hardware architectures has led to increased popularity of various ma
chine learning techniques including neural networks [42–44], genetic 
algorithms [45,46] and support vector machines [47] among others. In 
this work, we use a genetic algorithm (GA)-based search process in 
conjunction with molecular dynamics (MD) simulations to discover the 
lower limit of thermal conductivity in Si/Ge random multilayer systems. 
Our machine learning based approach demonstrates the elimination of 
human bias in the search process, thereby allowing us to identify 
non-intuitive trends in structural features leading to ultralow thermal 
conductivity. It is observed that the minimum RML thermal conductivity 
occurs, surprisingly, at a lower average period than that at which the 
minimum superlattice thermal conductivity is found. Finally, it is 
desirable, but challenging, to come up with a set of descriptors out of the 
optimization process, which can be intuitively understood and adopted 
during experimental realizations of such systems. Our work provides a 
hierarchical description of these structural features that will provide 
guidance for application of RML systems in various applications. 

2. Simulation methods 

2.1. Designing RML structures 

We have studied superlattice (SL) and random multilayer (RML) 
structures created from diamond structured Si and Ge with the heat 
transport along the ½001� direction. A number of theoretical and nu
merical studies have been performed on Si/Ge systems such as bulk al
loys [48,49], superlattice thin films [50–53] and superlattice nanowires 
[54–56], due to the ubiquitous presence of these semiconductors in a 
variety of applications. The lattice constant is initially set at 0.543 nm 
which is the room temperature lattice constant of silicon. To create the 
SL and RML structures, layers of Si and Ge are stacked along the ½001�
direction in a periodic and random manner, respectively. The smallest 
allowable thickness of a layer is chosen to be one unit cell. The repre
sentative SL and RML structures are shown in Fig. 1(a–b). The period of 
the SL is defined as the total thickness of a pair of consecutive Si and Ge 
layers, while for the RML, the period is calculated as the sum of the 
average thicknesses of Si and Ge layers in the whole structure. We 
perform our calculations for system sizes of 6� 6 unit cells in the 
in-plane direction (cross-section), and 40 unit cells (21.72 nm) in the 
cross-plane direction. No constraint is placed on the composition ratio of 
the RML structures (ratio of the number of layers of Si and Ge), which is 
allowed to vary during the optimization procedure. 

2.2. Non-equilibrium molecular dynamics simulations 

Non-equilibrium molecular dynamics (NEMD) simulations are per
formed using LAMMPS [57] to calculate the thermal conductivity of the 
multilayer structures. The schematic of the simulation setup is shown in 
Fig. 1 (c). The SL/RML is placed between two heat bath regions on either 
side which are capped by two end regions of fixed atoms to prevent 
sublimation. The interaction between Si and Ge atoms is modeled using 
the Tersoff potential [58], which has been widely used to predict ther
mal transport in Si–Ge system. The equations of motion are integrated 
using a Verlet algorithm with a timestep of 0.5 fs. Initially, periodic 
boundary conditions are applied in all directions and the system is 
relaxed at zero pressure and a temperature of 300 K in an NPT ensemble 
for 500 ps, after which it is run for another 250 ps in an NVE ensemble to 
observe proper conservation of energy. To introduce non-equilibrium 
conditions, the atoms in the two end regions are then fixed, and the 
temperatures of the hot and cold baths are maintained at 330 K and 270 
K respectively using Langevin thermostats to create a temperature 
gradient in the multilayer region. The system is allowed to reach steady 
state over a time of 4.5 ns and the temperature profile is monitored by 
binning the velocities of atoms along the direction of heat transport. The 
cross-plane thermal conductivity is then obtained from the steady state 
heat flux q’’ as 

κ¼
q}

ΔT=L
(1)  

where L is the length of the multilayer structure. The thermal boundary 
resistance (TBR) is calculated from the temperature drop at each indi
vidual interface (ΔTi) as 

Ri ¼
ΔTi

q’’
(2)  

2.3. Genetic algorithm based optimization method 

Genetic algorithms are a class of evolutionary algorithms which 
mimic the principle of natural selection to arrive at the optimal solution. 
The basic principle used by a GA is that already identified good solutions 
in one iteration can lead to potentially better solutions in the next 
iteration through evolutionary operations. In a GA based optimization, 

Fig. 1. Representative structures showing (a) superlattice of period 4.4 nm and 
(b) random multilayer with the same average period. Inset shows encoding of 
the RML structure in the GA as an N-bit array, where each bit is assigned 1 or 2 
if the unit cell is Si or Ge respectively. (c) Schematic of the NEMD simulation 
setup showing the RML sandwiched between two heat baths which are ther
mostatted to impose a heat flux through the system. 
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each candidate solution in a multivariate design space is represented by 
a string called a chromosome, formed by concatenating the individual 
variables encoded using genes. A commonly used approach to perform 
this encoding is to convert numeric values into binary strings, which 
lend themselves conveniently to evolutionary operations. In the initial 
iteration, a population is formed out of a chosen number of chromo
somes, which may be generated randomly or using previous knowledge 
about the design space. An objective function is designed for the 
particular problem to evaluate the performance of candidate solutions. 
Each member of the initial population is assigned a fitness value equal to 
the corresponding value of the objective function. Subsequently, a new 
population of the same number of chromosomes is generated by per
forming the evolutionary operations of selection, crossover and muta
tion on the individuals of the current population. Selection is performed 
by choosing individuals with high fitness values to propagate to the next 
iteration, and ensures that only the best individuals in the current iter
ation are carried over to the next. Crossover (or reproduction) produces 
new candidate solutions by combining genes from the selected in
dividuals to produce new chromosomes, while mutation perturbs the 
value of randomly selected genes within a chromosome to generate in
dividuals belonging to unexplored areas of the design space. Crossover 
and mutation are performed probabilistically by specifying rates of 
occurrence of the operations. This is usually done by generating a 
random number between 0 and 1 and performing the operation if the 
generated number is below the probability rate of the corresponding 
process. Together, the crossover and mutation operators ensure that the 
search does not get trapped in a local optimum within the solution space. 
The GA progresses by performing the above operations on the new 
population members, until a convergence criteria is reached, which can 
be set with respect to the change in fitness value over successive 
generations. 

We now discuss the implementation of the above steps in our GA 
based optimization process. To encode RML structures as chromosomes, 
an N-bit binary array is used for an RML of N unit cells length in the 
cross-plane direction. As shown in the inset of Fig. 1, each position in the 
array is coded as 1 if it is a Si unit cell and 2 if it is a Ge unit cell. Thus, 
each chromosome representing an RML structure is formed of N binary 
variables which can take values of 1 or 2. Additionally, the first and last 
unit cells which are in contact with the heat baths at each end are fixed 
to be Si (1) and Ge (2) respectively. As a result, the number of possible 
solutions in the design space is 2N� 2. A population size of 20 is used and 
the initial population is generated randomly or according to our choice 
for specific runs. The inverse of the cross-plane thermal conductivity is 
chosen as the objective function, which is maximum for the structure 
with the lowest thermal conductivity. To implement the selection pro
cess, we employ a rank-based selection scheme. In this scheme, the in
dividuals are first sorted by fitness values from best to worst. The 
probability of each individual being selected for the next iteration is 
then proportional to the inverse of its rank. For every two individuals 
selected, crossover is performed to generate two new individuals. We 
use a single-point crossover, in which a position along the N-bit array is 
chosen randomly and the sections of the chromosome following this 
position are interchanged among the two parent chromosomes. In 
contrast, mutation involves a single chromosome and is implemented 
probabilistically in either of two ways: (i) at a single position randomly 
chosen along the chromosome, the value of the gene is flipped (1–2 or 
vice-versa), or (ii) a section of the N bit array with contiguous variables 
having the same value (1 or 2) is identified, and a few adjacent variables 
are then switched to the same value. The first process is found to have 
more influence on controlling the number of interfaces in the RML 
structure, whereas the second process primarily changes the average 
period and composition ratio by changing the thickness of a layer of Si or 
Ge. A schematic process flow of the GA based optimization process, 
involving evaluation of the fitness function and implementation of the 
crossover and mutation operations, is shown in Fig. 2. 

The convergence of the GA based search process depends on the 

hyperparameters which must be carefully chosen to ensure a balance is 
achieved between exploration and exploitation of the design space. In 
this work, we use a trial-and-error based approach to arrive at suitable 
parameter values. The number of individuals in the population is chosen 
as 20 to keep the computational cost at each iteration low while still 
ensuring adequate sampling of the design space. We use a crossover 
probability of 0.8 and a mutation probability of 0.4 based on conver
gence rates observed in preliminary trials. The convergence criterion of 
the GA is met when the lowest thermal conductivity value does not 
change over several successive iterations. 

3. Results and discussions 

3.1. Manual intuition-based search for the minimum RML thermal 
conductivity 

The thermal conductivities of the N � N superlattice system of length 
40 unit cells are first calculated, where N ¼ 1; 2;4; 5;10 and 20 to allow 
only an integral number of periods. Fig. 3 (a) shows that a minimum 
superlattice thermal conductivity of around 3.5 W/mK is found to occur 
at period of 4.43 nm. The nature of the variation of thermal conductivity 
with average SL period has been explored in literature in significant 
detail [13,17–25]. The existence of the minimum superlattice thermal 
conductivity has been attributed to the competition between incoherent 
and coherent phonon dominated transport regimes. When the super
lattice period d is large, phase breaking occurs due to anharmonic 
phonon-phonon scattering and the role of incoherent phonons become 
more important. As the superlattice period decreases, the increase in 
interface density leads to higher phonon-boundary scattering and 
reduced thermal conductivity. On the other hand, wave interference 
effects become increasingly important at small d, and the phase breaking 
of phonons does not take place before the phonons scatter at the in
terfaces. The repeated reflections at periodic interfaces give rise to a 
modified phonon spectra including coherent phonon modes which are 
not scattered at the interfaces. Decreasing d below the critical super
lattice period leads to an increase in thermal conductivity, which has 
been explained by effects such as less zone folding leading to weaker 
band flattening and increased group velocities. 

The design space for imparting randomization to the superlattices is 
extremely high, making an exhaustive search for the RML with mini
mum thermal conductivity impossible. For a multilayer system con
sisting of N unit cells where the shortest layer length is constrained to be 
one unit cell, the total number of possible RML structures is 2N. In such 
cases, the traditionally adopted best approach is to search a smaller 
subset of the solution space, guided by previously discovered knowledge 
and intuition about heat transport in multilayer structures. Since the 
superlattice thermal conductivity minimum is obtained around a period 
of 4 nm considering our results and those in literature [52], it can be 
intuitively expected that the RML with minimum thermal conductivity 
can be obtained by randomizing the layer thicknesses of the same 
superlattice. As a result, we perform a manual search by evaluating the 
thermal conductivities of 100 randomly generated RML structures with 
an average period of 4.43 nm. The thermal conductivities of such RML 
structures are plotted in Fig. 3 (a). The lowest thermal conductivity 
obtained among these structures is 2.45 W/mK for the structure shown 
in Fig. 3 (b), which represents a 30% reduction from the minimum 
superlattice thermal conductivity. 

3.2. Genetic algorithm-based search for the minimum RML thermal 
conductivity 

Considering the infeasibility of an exhaustive search of the extremely 
large solution space, the use of machine learning can benefit the current 
problem significantly. Here, we choose a genetic algorithm (GA) to 
predict the best simulations to perform on our finite computational 
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resources by utilizing information from the results of previously per
formed simulations. We apply the GA based search process on RML 
systems consisting of 40 unit cells (21.72 nm). In order to explore greater 
portions of the design space and avoid getting trapped within local 
minima, 15 independent GA runs are performed starting from different 
initial populations. Fig. 4 shows the results of one run started with an 
initial population consisting entirely of structures with a single Si–Ge 
interface and a composition ratio of 1. Since this structure has the lowest 
possible interface density, we expect it to be the worst candidate in the 
design space. As a result, this initial population can be considered as a 
starting point for the search when no prior knowledge or intuition is 
available about the minimum thermal conductivity. The genetic oper
ators of crossover and mutation allow the GA to converge towards the 

minimum thermal conductivity even with this sub-optimal initial pop
ulation. The evolution of the population with iterations of the GA is 
shown in terms of thermal conductivity in Fig. 4 (a) and the average 
RML period in Fig. 4 (b). As seen in Fig. 4 (a), although all individuals of 
the initial population show high thermal conductivities, these gradually 
get eliminated from the population in subsequent generations. The 
reason for this can be understood by noting from Fig. 4 (b) that the later 
generations contain RMLs with much lower average periods and thus 
higher interface densities. The lowest thermal conductivity value for the 
entire population decreases rapidly and saturates about the minimum 
value in about 35 generations, in RMLs with an average period of 1.85 
nm. The RML structure with the lowest thermal conductivity among all 
the GA searches performed is shown in Fig. 3 (c). 

Fig. 2. Schematic of the genetic algorithm based optimization method showing the different steps involved. The GA population is initialized randomly with a chosen 
number of members and the fitness of each member is based on its thermal conductivity evaluated using NEMD simulations. The stopping criteria is checked and if it 
is not achieved, selection, crossover and mutation operations are carried out on the best individuals to obtain the next generation. 

Fig. 3. (a) Variation of thermal conductivity with 
average period length for N–N superlattices (red 
squares), RML structures obtained using manual 
intuition-based optimization (diamonds) and RML 
structures obtained using machine-learning based 
optimization (filled circles). The minimum RML 
thermal conductivity obtained from our optimization 
algorithm occurs at a smaller average period than 
that at which the minimum superlattice thermal 
conductivity is observed. The dashed purple line 
marks the random alloy limit. (b) RML structure with 
minimum thermal conductivity obtained from a 
manual optimization, (c) RML structure with mini
mum thermal conductivity obtained from a machine- 
learning based optimization, and (d) RML structure 
with average period below dmin; RML.   
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3.3. Influence of average RML period on the minimum thermal 
conductivity 

To gain insight into our optimization results, the thermal conduc
tivity variation with average period for the RMLs sampled during all our 
optimization runs on the 40 unit cell RML system is plotted in Fig. 3 (a). 
We only include structures with a composition ratio of 1 in order that the 
results can be compared to the N � N superlattice system. The major 
transport regimes can be easily identified from the relative magnitudes 
of SL and RML thermal conductivities at different average periods. At 
high average RML periods (>10 nm), the thermal conductivity of RMLs 
is similar to that of SLs, indicating that randomization of layer thick
nesses has negligible effect on thermal conductivity. Incoherent pho
nons, therefore, dominate thermal transport in both SLs and RMLs at 
these high periods. Below 10 nm, the thermal conductivity of RMLs 
keeps on decreasing with decreasing average period, while that of SL 
starts to level off. As a result, we can infer that coherent phonon trans
port starts becoming important in SLs in this region. As the average 
period further decreases, the thermal conductivity of the N� N super
lattice reaches a minimum at the critical SL period (dmin;SL) and then 
bounces back. However, the thermal conductivities of RMLs keep on 
reducing until reaching a minimum at a period of dmin;RML ¼ 1:85 nm, 
which is, notably, much lower than the critical SL period (dmin;SL). This 
surprising behaviour can be attributed to the fact that while the 
increasing phonon coherence leads to an increase in the thermal con
ductivity for the SL, it puts more phonon modes in localization in RMLs 
causing a decrease in thermal conductivity. Moreover, the occurrence of 
the observed minimum RML thermal conductivity at a smaller period 
than what was intuitively expected proves that our previous manual 
search could at best converge to a local minimum, and highlights the 
effectiveness of machine-learning based methods. We also calculated the 
random alloy limit of thermal conductivity by randomly assigning 50% 
of atomic masses in a Si structure of the same length to the mass of Ge, 
which is plotted in Fig. 3 (a). As seen from the figure, the GA-optimized 
RML structures are able to break the random alloy limit by more than 
25%. Although the phonons in the random alloy structures have small 
mean free paths due to alloy scattering, they can still propagate and 
contribute to the thermal conductivity. However, the majority of 
coherent phonons in the RML are completely localized and have no 
contribution to the thermal transport, leading to lower thermal con
ductivity values. 

Below dmin;RML, the thermal conductivity of RMLs increases steeply as 
the average period decreases further. This occurs because at such low 
average periods, the room for randomizing the individual layer thick
nesses from the periodic SL thickness becomes small, as a result of which 
localization of coherent phonons is reduced significantly. This is seen in 

Fig. 3(b–d) where the RML with the lowest thermal conductivities ob
tained for three different average periods from the GA are plotted. For 
d ¼ dmin;RML ¼ 1:85nm (Fig. 3 (c)), the layer thicknesses have room to 
become sufficiently randomized to allow for localization of coherent 
phonons, while providing a high interface density for incoherent phonon 
scattering. The combination of both of these favourable effects leads to 
the existence of the minimum RML thermal conductivity at this period. 
For d ¼ 1:38nm < dmin;RML (Fig. 3 (d)), the majority of the superlattice 
has to be composed of single layers of Si and Ge arranged periodically, 
which allows for less room for localization of coherent phonons. In the 
limiting case of the shortest average period possible (d  ¼ 1 unit cell of Si 
þ 1 unit cell of Ge), the RML structure is the same as a 1-1 superlattice 
with no room for introducing randomness. On the other hand, at periods 
greater than dmin;RML (Fig. 3 (b)), the larger thicknesses of individual 
layers provide more freedom for randomization and spatial distribution 
of layers. However, the lower interface density also gives rise to lower 
incoherent phonon scattering and overall higher thermal conductivities. 

3.4. Degree of randomness 

RMLs with the same average period and composition ratio can still 
have different distributions of layer thickness within them. Since the 
interface densities and hence the degree of incoherent phonon scattering 
in such RMLs are the same, the variation in thermal conductivity at a 
particular average period, observed in Fig. 3 (a), is attributed to varying 
degrees of localization of coherent phonon modes within the RMLs. The 
existence of partially localized phonon modes in RMLs was identified 
from the thermal conductivity accumulation with respect to phonon 
frequency by Juntunen et al. [34]. Such partially localized modes, which 
have finite contribution to thermal conductivity of RMLs, will depend on 
the local randomization of layers throughout the RML structure. The 
degree of randomization of a RML can be quantified by the normalized 
average deviation of layer thicknesses from that of the corresponding SL 
of the same period, and is given by 

DOR¼
Pn

i¼1jti � d=2j
n� d=2

(3) 

Here, n is the number of periods in the RML, ti is the thickness of 
individual layers and d is the average RML period which is also the 
corresponding SL period. Normalization by the mean period accounts 
for the fact that the same average deviation from a smaller mean period 
causes a larger degree of randomness than from a larger mean period. 
The variation of thermal conductivity with DOR is plotted in Fig. 5 (a) 
for all RML structures with an average period of d ¼ dmin;RML ¼ 1:85 nm 
and a composition ratio of 1. Although it is intuitively expected that a 

Fig. 4. Variation of (a) thermal conductivity and (b) average RML period of the population with each iteration of the genetic algorithm based search process. The 
blue circles mark the best individual (lowest κ) of each generation. 
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larger deviation from the periodic SL structure leads to lower thermal 
conductivity of RMLs, we surprisingly find that the RML structure with 
minimum thermal conductivity occurs at an intermediate degree of 
randomness. Moreover, a variation in thermal conductivity of 25% is 
observed within structures at this degree of randomness. To understand 
the reasons governing this non-intuitive trend, we calculate the thermal 
boundary resistance (TBR) at the interfaces within four RMLs selected at 
different degrees of randomness, as marked in Fig. 5. To eliminate the 
effect of lattice mismatch, the lattice constants of both Si and Ge in these 
simulations are fixed at 0.543 nm. The trends in thermal conductivity 
obtained for these lattice-matched RMLs is verified to be similar to those 
in the original systems. The TBRs obtained within the four structures are 
shown in Fig. 5(b–e), superimposed on the corresponding RML struc
tures for easier visualization. At low values of DOR, the deviation of the 
RML from the corresponding SL is low and much of it retains the periodic 
structure. As a result, localization of coherent phonons is less in these 
RMLs, leading to coupled interfaces with low values of TBR in these 
periodic regions as seen in Fig. 5 (d). On the other hand, high values of 
DOR require some layer thicknesses of the RML to be quite large, while 
other regions are necessarily composed of contiguous single layers 
leading to periodic interfaces and low TBR values (Fig. 5 (e)). However, 
at an intermediate degree of randomness, the occurrence of both small 
and large layer thicknesses interspersed among each other creates a 
favourable environment for coherent phonon localization, leading to 
relatively higher values of TBR across the entire structure (Fig. 5 (b)). 
Finally, Fig. 5 (c) shows the TBRs calculated in another RML at this 
intermediate DOR, in which periodic sections with low interfacial re
sistances are noticed. Although the distribution of layer thicknesses in 
this RML are similar to the best structure (b), the different relative 
placement of these layers within the RML leads to formation of periodic 
zones within this RML with low interfacial resistances and higher ther
mal conductivity. 

4. Conclusions 

To summarize, we have searched for the lower limit of thermal 
conductivity in Si/Ge based RML systems using both an intuition-guided 
manual search and a genetic algorithm based search process. We find 
that our manual search is, at best, able to converge to a local minimum of 
thermal conductivity, while the machine-learning based search can 
efficiently lead us toward the RML structure with the globally minimum 
thermal conductivity. The minimum RML thermal conductivity is found 
to occur at an average RML period that is much lower than the period of 
minimum SL thermal conductivity. The location of this average period is 
determined by a tradeoff between high interface density at smaller pe
riods and sufficient scope for randomizing the layer thicknesses at larger 
periods. The variation in thermal conductivity within RMLs having the 
same period is further resolved by defining the degree of randomness as 
a measure of deviation of the RML layer thicknesses from the periodic SL 
layer thickness. We have shown that the GA optimized minimum ther
mal conductivity occurs for RMLs with an intermediate degree of 
randomness. By calculating the thermal boundary resistances within 
different RMLs, it is observed that greater local mismatch between 
adjacent layers leads to higher coherent phonon localization and thus 
higher TBRs. The different distributions of layer thickness and moreover 
the spatial placement of these layers causes a variation in the degree of 
coherent phonon localization. The generality of our optimization 
method implies that it can be applied to other systems as well such as 
graphene sheets with disordered arrangement of pores and binary 
superlattices with rough interfaces of different geometries. Finally, we 
would like to mention that our observed trends in thermal conductivity 
of RML systems are governed by general phonon transport properties 
such as phonon wavelengths, mean free paths and coherence lengths. 
Although we investigate the Si/Ge based RML system in this work, the 
non-intuitive trends in the variation of RML thermal conductivity with 
respect to the different structural parameters should be easily applicable 
to other RML systems as well such as conceptual Lennard-Jones 

Fig. 5. (a) Dependence of thermal conductivity of 
RML structures on the degree of randomness (DOR) 
as defined in the text. The orange circles and dashed 
lines represent the lower bound of thermal conduc
tivity obtained using our machine-learning based 
search process. For the four structures marked in the 
plot, the calculated thermal boundary resistances of 
all interfaces in each of the structures, superimposed 
on the visualization of the RML structures them
selves, are shown in figures (b)–(e).   
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materials as well as more practical Bi2Te3/Sb2Te3 or GaAs/AlAs systems. 
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