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Development of interatomic potentials for the complex binary compound Sb2Te3

and the prediction of thermal conductivity
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Molecular dynamics (MD) simulation has emerged as a powerful predictive tool to study mechanical and
thermal properties of materials, without the requirement for any fitting parameter inputs such as phonon
relaxation time. However, the lack of suitable interatomic potentials for many complex materials greatly prohibits
effective use of MD simulations to investigate properties of bulk materials and nanostructures. In this paper,
we use the method of fitting to an ab initio energy surface to develop interatomic potential parameters for
the complex binary material antimony telluride, which has important applications in thermoelectric energy
generation. Density-functional theory is used to calculate the ground-state electronic structure of the Sb2Te3

crystal, following which the total energies of a series of artificially distorted lattice configurations are calculated
to create the energy surface. A Morse potential functional form is fitted to the energy surface and experimental
data, and the parameters are used to calculate the bulk crystal properties and phonon spectra using lattice
dynamics. Our parameters are able to reproduce the lattice structure, elastic constants, and acoustic phonon
dispersion in good agreement with experimental data. MD simulations are performed using the fitted potential
to calculate the thermal conductivity of bulk Sb2Te3 using the Green-Kubo method. The predicted thermal
conductivity shows a 1/T variation in both in-plane and cross-plane directions with the results in the range
of experimental measurements. Frequency domain normal mode analysis is used to calculate the modal phonon
relaxation times and the accumulation of thermal conductivity with respect to phonon mean free paths. The
results show that phonons with mean free paths between 3 and 100 nm contribute to 80% of the total cross-plane
thermal conductivity.
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I. INTRODUCTION

Experimental discovery of novel materials for various
applications needs to be complemented by high-throughput
computer simulations of material properties. Due to the avail-
ability of modern computer architecture and massively par-
allel systems, atomic-level methods such as ab initio calcu-
lations and molecular dynamics (MD) simulations enable us
to efficiently predict properties over a variety of system sizes
and timescales. In particular, MD simulation has emerged as
a powerful tool to predict properties of both bulk materials
and nanostructures, due to its capability of simulating large
systems (∼1 million atoms) for as long as several hundred
nanoseconds. Another advantage of MD simulations is that
it does not require any fitting parameters as inputs, except
suitable interatomic potential parameters to describe the force
field.

The development of an appropriate interatomic potential
form for a material is a challenging task which involves
approximating a complex many-body potential function with
generally a simple two-body or three-body form. Although
interatomic potentials have been developed for many elemen-
tal materials and simple compounds [1], a significant lack
of suitable potential parameters is observed for compounds

*ruan@purdue.edu

with complicated crystal structures that can have important
applications such as in thermoelectric power generation and
photovoltaics. For example, Bi2Te3 and Sb2Te3 have been
known to exhibit the best bulk thermoelectric properties for
more than 50 years; yet interatomic potentials for Bi2Te3 have
only been developed recently [2,3] and are still absent in
literature for Sb2Te3. Breakthroughs in nanotechnology have
enabled experimental demonstrations of even higher thermo-
electric performance in Bi2Te3/Sb2Te3 nanostructures [4–14].
However, computational studies on such systems are few due
to absence of developed potential parameters to describe these
materials. The presence of van der Waals interaction and
polarization of charges in these compounds makes it even
more difficult to develop simple and transferable potential
parameters for them.

Traditionally, interatomic potentials are developed by fit-
ting a chosen functional form to reproduce available data for a
material. The data used in fitting can be obtained from exper-
imental measurements of bulk crystal properties like lattice
constants, bond energies, and elastic and bulk moduli. Such
experimental data are generally obtained for the equilibrium
state of a material where the atomic interactions are harmonic
in nature. However, to accurately predict anharmonic phonon-
phonon scattering and heat transfer processes, the interatomic
potential must be able to reproduce the anharmonicity in
bonds at configurations far from the equilibrium state. Hence,
most of these potentials are appropriate for the prediction of
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mechanical properties while not being suited for predicting
thermal transport properties. An alternative to using exper-
imental data in the potential fitting process is to generate
the required data from ab initio calculations. The advantage
of this method is that it provides the capability to sample
both equilibrium and nonequilibrium states with appropri-
ate weighting parameters chosen according to the purpose
of potential development. As a result, these potentials can
accurately predict anharmonic vibrational properties such as
thermal conductivity. Using this method, Huang and Kaviany
developed a three-body potential for bulk Bi2Te3 and used it
in equilibrium MD simulations to predict the phonon thermal
conductivity [2], while Qiu and Ruan developed a simpler
two-body Morse potential for bulk Bi2Te3 [3]. The predicted
lattice thermal conductivity of the bulk crystal agrees very
well with experimental data for both the potentials. As a re-
sult, these parameters have been used extensively to study the
thermal properties of bulk Bi2Te3 [2,3,15], thin films [16–19],
and nanowires [20,21]. Katcho et al. [22] calculated the
phonon modes of a (Bi1−xSbx )2Te3 alloy for any composition
x by using Qiu and Ruan’s Bi2Te3 potential for Sb2Te3 with
rescaled force constants. The rescaling factor was obtained by
fitting to the experimental phonon density of states (PDOS)
for bulk (Bi1−xSbx )2Te3. However, the bond lengths in bulk
Sb2Te3 are different from that of Bi2Te3, and using the same
potential parameters for both would result in a strained Sb2Te3

lattice. More recently, Rohskopf et al. [23] used a genetic
algorithm-based optimization method to fit a combination of
different functional forms of interatomic potentials for Si and
Ge. Such modified potentials have been shown to predict the
phonon properties well for Si and Ge. Developing simple and
accurate potentials for phonon thermal transport in complex
compounds is still challenging and an issue of current interest.

In this paper, we describe the procedure of developing
a simple two-body Morse potential for the complex binary
compound Sb2Te3 bulk crystal from ab initio calculations,
and then predict the phonon thermal conductivity using these
potential parameters in MD simulations. First, we perform
density-functional theory (DFT) calculations to obtain the
ground-state energies of a large number of atomic config-
urations of the lattice. The interatomic potential parameters
are then fitted to this energy surface along with suitable
experimental data such as lattice constants and bulk modulus.
The obtained potential parameters are validated using lattice-
dynamics calculations by reproducing the bulk crystal struc-
ture and harmonic properties. Equilibrium MD simulations
are then performed using the Green-Kubo method to predict
the lattice thermal conductivity over a temperature range of
200–500 K. Frequency domain normal mode analysis (FD-
NMA) is also used to compute the phonon modal relaxation
times and the thermal conductivity accumulation with respect
to phonon mean-free path.

II. ELECTRONIC STRUCTURE AND
PHONON DISPERSION

Bulk Sb2Te3 has a tetradymite structure and belongs to
the D5

3d (R3̄m) space group. The atoms are arranged along
the trigonal axis in a quintuple layered structure in the
order of Te1-Sb-Te2-Sb-Te1 (Fig. 1). The crystal can be

FIG. 1. Quintuple-layered crystal structure of Sb2Te3 showing
rhombohedral (right) and hexagonal (left) unit cells.

described by the primitive rhombohedral unit cell consisting
of five atoms. The corresponding lattice parameters are aR =
10.447 Å, θR = 23.55◦ with the Sb and Te1 atoms located
at (±u, ±u, ±u) and (±v, ±v, ±v), respectively, where u =
0.3988 and v = 0.2128 [24]. The more convenient represen-
tation is the hexagonal conventional cell (Fig. 1) with lattice
parameters a = 4.264 Å and c = 30.458 Å. To compute the
electronic structure of the bulk crystal, we perform ab initio
calculations based on the DFT framework, using the projector-
augmented wave method as implemented in the VIENNA Ab
initio SIMULATION PACKAGE (VASP). Electron exchange and
correlation is treated using the generalized gradient approx-
imation and the effect of spin-orbital coupling is included,
which is necessary to accurately describe heavier elements
such as Sb and Te. The cutoff for the plane-wave basis set
and the density of the k-point grid in the Brillouin zone
are chosen as 500 eV and 8 × 8 × 8, respectively, according
to convergence tests. To preserve the layered structure of
Sb2Te3 in which the quintuple layers are held together by
weak van der Waals forces of attraction, we also include
the DFT-D2 correction method of Grimme [25]. We find,
in accordance with previous reports [26], that the van der
Waals correction can better reproduce the experimental unit
cell parameters. The fully relaxed rhombohedral primitive cell
parameters are obtained as aR = 10.597 Å, θR = 23.12◦ with
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FIG. 2. Electronic band structure of Sb2Te3 along some high
symmetry directions computed using DFT.

the atomic positions at u = 0.39712 and v = 0.21370, which
is in good agreement with previous studies using the DFT-D2
correction [26,27]. The calculated electronic band structure
along some high symmetry directions is shown in Fig. 2. Due
to the inclusion of spin-orbit coupling, a multivalley band
structure is observed, which agrees well with previous studies
in literature [28].

To study the phonon properties of bulk Sb2Te3, we use
the method of finite displacements to calculate the forces
and force constants using the PHONOPY code [29] coupled
with VASP as the calculator. Forces are calculated on each
inequivalent atom in the rhombohedral unit cell to generate
the force constants and a 3 × 3 × 3 supercell is used. Spin-
orbital coupling is not included in these calculations since pre-
vious reports suggest that the vibrational properties of Sb2Te3

are not affected significantly by the inclusion of spin-orbital
coupling [30]. The obtained PDOS is plotted in Figure 3
and compared to experimental results from inelastic neutron
scattering [31]. As seen in the figure, the ab initio calculations
can successfully reproduce the position and relative strength
of the peaks and the overall cutoff range of frequencies with
respect to the experimental measurements. The A1g phonon
mode calculated at the Gamma point showed a frequency
of 2.15 THz which is very close to the experimental value
of 2.07 THz [32]. Since our calculation of the ground-
state configuration including the vibrational properties is
accurate and consistent with previous reports, it is used to
generate the ab initio energy surface data for parametrizing the
classical interatomic potentials optimized for phonon trans-
port properties.

Once the equilibrium lattice structure is obtained, the
different configurations for the ab initio energy surface are
generated by following a systematic approach: (1) varying
the internal atomic coordinates at the equilibrium lattice
constant, (2) varying the lattice constant while keeping the
internal atomic coordinates (symmetry) fixed, and (3) varying
the internal atomic coordinates at different lattice constants.
Figure 4 shows a schematic for generating the energy
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FIG. 3. Phonon density of states of Sb2Te3 computed from fitted
interatomic potential parameters (solid line), ab initio calculations
(dashed line), and experimental values from Ref. [31] (circles).

surface in this manner using these distorted lattice configu-
rations. Several interatomic potentials have been developed
in literature by considering very small atomic displacements
from equilibrium, which can represent only the harmonic
characteristics of interactions between atoms. Since our aim
is to fit potential parameters which can accurately predict
thermal conductivity, it is important to consider displacements
that can represent the anharmonicity of pairwise interactions
in our temperature of interest. To achieve this, the largest
displacements from equilibrium positions given to the atoms
are around 0.35 Å. This is estimated from the characteristic

(a)(b) (c) (d)

(e)

(f )

FIG. 4. Schematic showing the generation of the ab initio energy
surface. The circles represent different configurations used in the
energy surface such as the equilibrium configuration (a), displace-
ments of atom(s) at fixed lattice constant [(b)–(d), variation of
lattice constant with atoms fixed at equilibrium positions (e), and
displacement of atom(s) at varied lattice constant (f). The dashed
line represents the classical interatomic potential fitted to the energy
surface.
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thermal energy kBT at 300 K and displacements of this scale
are expected to sample the anharmonicity comprehensively.
We have also performed ab initio molecular dynamics sim-
ulations at 300 K to verify from the trajectories that the
atomic displacements are in the same range. As a result, this
magnitude of displacement given is sufficient to represent the
anharmonic nature of the solid around our temperature of
interest. For better performance of the gradient-based fitting
process, we artificially build the configurations using these
displacements to maintain as much symmetry of the lattice
as possible which helps in convergence of the fitting runs.

Apart from varying the internal atomic coordinates, the
lattice constant is varied within 1.4% of the equilibrium
value, and the atomic positions are varied at different lattice
constants. The inclusion of such configurations in the energy
surface is necessary to capture the temperature-dependent
phonon properties due to thermal expansion. Also, since the
bulk modulus is computed from the variation of energy with
respect to the volume of the unit cell, the inclusion of these
configurations ensure that the fitted parameters are able to
reproduce the equilibrium lattice constant and the bulk mod-
ulus. Besides fitting to the energy surface, Rohskopf et al.
[23] proposed fitting to the forces on each atom and the
harmonic and third-order interatomic force constants calcu-
lated from ab initio methods. Forces and force constants are
first order and higher order derivatives of the energy surface
( ∂E

∂ri
, ∂2E

∂ri∂r j
, ∂3E

∂ri∂r j∂rk
...), respectively. These are calculated us-

ing the method of finite differences from the energy surface
data points near the equilibrium configuration. As a result,
using force constants should be equivalent to our method of
fitting to only the energy surface data, provided the same
number of energy surface data points near the equilibrium
is used. To generate data points representative of interatomic
force constant calculations, we use the open source software
ALAMODE [33] to obtain configurations which would be
used in force constants calculations, and include these con-
figurations in our ab initio energy surface. The total number
of configurations we use in fitting are 108, out of which 60
configurations represent variation of internal atomic coordi-
nates at the equilibrium lattice constant, 14 configurations
represent variation of the lattice constant with fixed atomic
fractional coordinates, 19 configurations represent variation
of atomic fractional coordinates at a varied lattice constant,
and 15 configurations are made to be representative of force
constant calculations.

Above, we have described a hierarchical process of includ-
ing different configurations at different stages of fitting till
the thermal conductivity can be reproduced well. We shall
note that currently the methodology does not work in the
perfect manner that the fitting converges smoothly as more
configurations are added. Due to the complicated nature of
the fitting process involving 21 variables, we find that simply
adding more configurations to the energy surface does not
always generate a better fit. On the contrary, addition of
specific structures to the fitting data set sometimes causes
the fitting process to diverge, and the relative weights of
these configurations in the objective function may need to
be adjusted carefully to prevent this from happening. Often,
some older configurations need to be removed when new

configurations are added. Another reason that inclusion of
more configurations does not always ensure better potential
parameters is that the ab initio results do not exactly match
with the experimental data that are also included as fitting
targets. As a result, there needs to be a balance between
the number of ab initio configurations used and the experi-
mental data included, so that the fitted potential parameters
can reproduce both types of observables with good accuracy.
Finally, the potential parameters will depend on the purpose
the potential is used for and are not unique. For mechani-
cal properties, often only the near-equilibrium configurations
need to be considered; for thermal conductivity, anharmonic
configurations away from the equilibrium need to receive con-
siderable weight; while for chemical reactions, configurations
far away from the equilibrium and near bond-breaking need to
be included. This will impact the final fitted parameters since
there is no unique way to choose the weighting factors.

III. CLASSICAL INTERATOMIC
POTENTIAL PARAMETERS

Interatomic potentials which can accurately reproduce the
quantities of interest are the primary requisite for perform-
ing meaningful MD simulations. For complex materials, the
choice of the potential functional form is also very important.
Many-body potentials may be able to provide a more accurate
description of a material along a wider range of simulation
conditions, but they involve several parameters and are not
very accessible due to their complex forms. On the other
hand, most two-body potential forms are simple to implement,
computationally less expensive, and can reproduce material
properties with good accuracy. For example, the potential
parameters developed by Qiu and Ruan for Bi2Te3 have
a simple two-body form which ensures better accessibility,
while being able to predict phonon anharmonicity and thermal
conductivity very well among other properties [3]. Since no
potential parameters exist in literature yet for Sb2Te3, we
choose to develop two-body interatomic potential parameters
which can suitably describe its phonon transport properties.

We use a two-body potential form ϕ(ri j ) between atoms i
and j composed of a short-range interaction term ϕs(ri j ) and
a long-range Coulombic term which can be written as

ϕ(ri j ) = ϕs(ri j ) + qiq j

ri j
, (1)

where ri j is the distance between the atoms i and j. qi and
q j are the partial charges on the atoms, which are more
appropriate to use for solids like Bi2Te3 and Sb2Te3 that
have a partially covalent nature. The partial charges used
in the potential parameters are 0.30, −0.22, and −0.16 for
Sb, Te1, and Te2 atoms, respectively, which were obtained
by allowing the charges to vary during the potential fitting
process. In this paper, we use a rigid ion model to fit the
atomic charges. Alternatively, a core-shell model might be
used to better reproduce the polarization in Sb and Te atoms.
However, the increased number of fitting parameters incurred
due to this approach makes it very difficult to obtain con-
verged parameters during the parametrization process. The
short-range interaction is modeled using the Morse potential
form, which is suitable to describe the vibrational properties

155202-4



DEVELOPMENT OF INTERATOMIC POTENTIALS FOR THE … PHYSICAL REVIEW B 99, 155202 (2019)

TABLE I. Fitted short-range Morse potential parameters for
Sb2Te3. De is the depth of the potential well, a is a measure of
bond stiffness, r is the pairwise atomic distance, and rc is the cutoff
distance.

Type of De a ro rc

interaction (eV) (1/Å) (Å) (Å)

Sb - Sb 0.089 2.112 4.258 5.5
Te1 - Te1 0.072 1.720 3.795 5.0
Te2 - Te2 0.066 2.639 4.261 5.0
Sb - Te1 1.008 1.292 3.018 4.0
Sb - Te2 0.538 1.166 3.172 4.0
Te1 - Te2 0.750 0.595 4.486 5.5

of solids, including anharmonicity. The functional form is
given by

ϕs(ri j ) = De[{1 − e−a(ri j−ro)}2 − 1] (2)

Here, De is the depth of the potential well (bond strength), a
is a measure of the width of the well (bond rigidity), and ro is
the location of the potential well minimum which corresponds
to the bond length. As in the case of the two-body potential
development of Bi2Te3 [3], we consider only the nearest-
neighbor interactions by carefully choosing the cutoffs for
different interactions. This treatment of short-range interac-
tions has been found to be crucial for preserving the complex
layered structure of the crystal. The long-range electrostatic
potential is computed by the Ewald summation method with a
real-space cutoff radius of 12 Å.

The potential parameters are fitted to the ab initio en-
ergy surface using the GENERAL UTILITY LATTICE PROGRAM

(GULP) [34], which is designed to handle multivariable opti-
mization problems. The total number of parameters allowed
to be fit during the optimization is 21, which includes 18
potential parameters for six different types of interactions, two
partial charges, and an energy shift to account for the differ-
ence in reference levels for potential energy. The parameters
obtained from the fitting process are then used to optimize
the crystal structure and calculate bulk properties at the equi-
librium configuration. These are compared with experimental
data and the process is iterated until the predicted results show
good agreement with experimental data. The optimized poten-
tial parameters are shown in Table I, along with the cutoff radii
rc. As in the Morse potential parameters for Bi2Te3 in Ref.
[3], we see that the Te1-Te1 bond has a relatively weak bond
energy (De) along with a high bond stiffness (represented
by a), which is attributed to the fact that these parameters
represent both the weak van der Waals interaction between
Te1 atoms of two adjacent quintuple layers (cross plane), as
well as the covalent Te1-Te1 interaction within the same layer
(in plane). In contrast, the interlayer (cross-plane) Sb-Te1,
Sb-Te2, and Te1-Te2 bonds have a higher bond energy and
larger anharmonicity which suggests the more ionic nature
of these bonds. They also have lower bond stiffness due
to which the material elasticity in the cross-plane direction
(C33) is lower than in the in-plane direction (C11). The elastic
constants and bulk modulus obtained using the fitted potential
parameters are shown in Table II and compared with those

TABLE II. Computation of elastic constants and bulk modulus
using fitted potential parameters and comparison with ab initio
calculations. All quantities are in gigapascals.

Ab initio Classical
Property (this paper) Ab initioa Ab initiob potential

C11 77.5 85.5 83.2 83.8
C12 21.9 21.0 21.2 28.1
C13 25.5 30.8 46.1 24.7
C14 14.3 21.1 - 9.5
C33 46.5 50.5 99.7 49.1
C44 27.8 37.9 44.6 20.6
C66 27.1 - 31.0 27.9
B 32.7 42.1 53.2 39.9

aRef. [36].
bRef. [35].

obtained from our own ab initio calculations as well as from
previous literature [35,36]. It is apparent from these results
that the phonon thermal transport in the cross-plane direction
is expected to be weaker than that in the in-plane directions.

The fitted potential parameters are also used to calculate
the PDOS by computing the dynamical matrix in GULP
(Fig. 3). We can see that our classical interatomic potential can
successfully reproduce the low-frequency acoustic-phonon
portion of the PDOS compared to both ab initio calculations
and experimental measurements in terms of the position and
relative magnitude of the low-frequency peaks. In contrast,
the position of the high-frequency optical peak is shifted
significantly higher with respect to ab initio and experimental
data. To further analyze the phonon properties, the phonon
dispersion along high-symmetry directions is compared to
ab initio results and inelastic neutron scattering data [32]
in Fig. 5. We can see that the acoustic phonon branches
are reproduced in very good agreement with experiment, but
the optical branches are overpredicted. These dissimilarities
between calculation and experiment can be attributed to using
a simple two-body potential form to fit the energy surface,
along with the use of a rigid ion model. A more detailed core-
shell charge model may be able to improve the optical phonon
dispersion by accounting for the charge polarization. In spite
of the limitations of our simple potential form, it is able to
accurately describe the lattice structure, elastic properties,
and dispersion of acoustic phonons. Moreover, simulations
of thermal transport in Bi2Te3 using the Morse potential
parameters showed very good agreement with experimental
measurements [3], which suggests that the contribution of
optical phonons to lattice thermal conductivity is low for
these compounds. Since the thermal transport is dominated
by the low-frequency acoustic phonons, we can expect that
our potential parameters will be able to accurately predict the
lattice thermal conductivity of Sb2Te3.

IV. MOLECULAR DYNAMICS SIMULATIONS
OF LATTICE THERMAL CONDUCTIVITY

We use equilibrium molecular dynamics (EMD) to predict
the lattice thermal conductivity of Sb2Te3 in the in-plane and
cross-plane directions over a range of temperatures. EMD
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FIG. 5. Phonon dispersion of Sb2Te3 along some high-symmetry
directions computed from ab initio calculations (broken line), fitted
interatomic potential parameters (solid line) and experimental values
from Ref. [32] (circles).

simulations use the Green-Kubo linear-response formulation
[37] to predict the thermal transport properties, while the
effect of system size has been found to be small due to
the application of periodic boundary conditions. Under the
Green-Kubo formalism, the phonon thermal conductivity of
a system is given by

κl,α = 1

kBV T 2

∫ ∞

0
〈Sα (0).Sα (t )〉dt, α = x, y, z. (3)

Here, V is the volume of the simulation cell, T is the absolute
temperature in Kelvin, Sα (t ) is the heat current along a par-
ticular direction, and 〈Sα (0).Sα (t )〉 represents the heat current
autocorrelation function (HCACF). For a pair potential, the
heat current is commonly written as

S =
∑

i

eivvvi + 1

2

∑
i, j

(F i j .vvvi )ri j, (4)

where ei is the energy and vi is the velocity of particle i, and
Fi j is the force acting between particles i and j separated by
ri j . The integral in Eq. (3) is in practice carried out over a
finite time interval which needs to be decided appropriately
based on the longest phonon lifetimes existing in the material.

We performed MD simulations of bulk Sb2Te3 on a system
consisting of 6 × 6 × 2 hexagonal unit cells with a total of
1080 atoms. Convergence tests with larger system sizes show
negligible size effects. The equations of motion are integrated
using the Verlet algorithm with a time step of 0.25 fs, which
is sufficient to resolve the highest frequency phonon mode
calculated from lattice dynamics, while the Nose-Hoover
thermostat is used to regulate system temperature. Initially,
the bulk lattice structure is equilibrated under constant tem-
perature and pressure (NPT) for 250 ps to minimize the stress
on the system, after which it is switched to a constant energy
and volume (NVE) ensemble and run for another 250 ps to
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FIG. 6. MD predicted thermal conductivity in in-plane and cross-
plane directions and 1/T fitting compared with experimental data
(Refs. [39,40]), calculations using a modified Calloway model
(Refs. [41,42]), and BTE + 3 phonon calculations (Ref. [43]).

observe conservation of energy. Following this step, the heat
current data is obtained for 20 ns to compute the HCACF,
with a sampling interval of 10 time steps. MD simulations are
performed over a temperature range of 200 K to 500 K with
an interval of 50 K.

To minimize statistical fluctuations, we perform runs for 10
independent ensembles at every temperature. The uncertainty
associated with calculation of thermal conductivity from equi-
librium MD simulations has recently been quantified by Wang
et al. [38] who correlated the standard deviation σκ of the
predicted thermal conductivity about the average κave, with
the total simulation time ttotal, HCACF correlation time length
tcorr, and number of independent runs N as

σκ

κave
= 2

(
N × ttotal

tcorr

)−0.5

(5)

Based on their suggestion, we compared the thermal conduc-
tivity from MD simulations performed for the system at 300 K
with a total time of 2 ns and 20 ns and a fixed correlation time
of 125 ps. Our results indeed show that the spread in thermal
conductivity values from different runs reduces significantly
with increasing total simulation time, which is expected since
time averaging in MD simulations is equivalent to ensemble
averaging.

The variation of lattice thermal conductivity κl in both
in-plane and cross-plane directions with temperature is shown
in Fig. 6, along with the 1/T fitting. The error bars for each
data point have been obtained using Eq. (5). Both the in-plane
and the cross-plane thermal conductivities generally follow
a 1/T curve which indicates the dominance of Umklapp
scattering. Experimental measurements of thermal conduc-
tivity of bulk Sb2Te3 in literature have large discrepancies
among themselves. This may be due to the fact that the
values reported often do not separate either the contributions
from electronic and lattice contributions, or the in-plane and
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cross-plane anisotropy which is high for a layered material
such as Sb2Te3. The reported values for total thermal con-
ductivity vary widely from 2–5 Wm−1K−1 [39,40,44–48]
while the lattice thermal conductivity is generally estimated
at around 1.3-2.5 Wm−1K−1 [39,40,47,48]. The theoretical
lattice thermal conductivity has been calculated using the
modified Callaway model as κ‖ = 2.2 Wm−1K−1 and κ⊥ =
0.34 Wm−1K−1 [41,42]. Campi et al. [43] predicted the ther-
mal conductivity of Sb2Te3 from first principles by solving the
Boltzmann transport equation. The phonon-phonon scattering
was derived by calculating the anharmonic force constants
using the framework of density functional perturbation theory.
The in-plane thermal conductivity at 300 K obtained in their
work is 2.0 Wm−1K−1, which is higher than the results we
observe in our calculations, while the cross-plane thermal
conductivity obtained is 0.8 Wm−1K−1, which agrees well
with our results. The higher in-plane conductivity may be
due to the fact that the authors in Ref. [43] have included
only three-phonon scattering in their computations, while our
MD treatment inherently includes higher order processes such
as four-phonon scattering, which may be important [49–51].
Besides, the inaccuracy of the potential to reproduce the
optical phonon dispersion may also contribute to the observed
discrepancy.

V. PHONON MODAL RELAXATION TIME AND THERMAL
CONDUCTIVITY ACCUMULATION

We also calculate the contribution of different phonon
modes to the total cross-plane lattice thermal conductivity us-
ing FD-NMA. The total thermal conductivity can be obtained
as the sum of the modewise thermal conductivities k j of all
phonon modes in the first Brillouin zone,

κz =
∑

j

κ j = 1

(2π )3

∑
ν

∫
(vλ · ẑ)2cλτλdk, (6)

where z is the cross-plane direction, λ represents the phonon
mode (k, ν) with k being the wave vector and ν the po-
larization branch, cλ is the phonon mode specific heat, τλ

is the relaxation time, vλ is the group velocity, and the
summation over the Brillouin zone is converted to the con-
tinuous integral form using

∑
k = V/(2π )3

∫
dk. The spe-

cific heat per phonon mode is given by cλ = h̄ωλ∂n0
λ/∂T =

kBx2ex/(ex − 1)2, where x = h̄ω/kBT , and the phonon oc-
cupation number n0

λ = 1/(ex − 1) according to the Bose-
Einstein distribution. The phonon group velocity is given by
the gradient of the phonon dispersion, v = dω/dk, where ω is
the phonon angular frequency.

The FD-NMA method was initially developed by Wang
et al. [52] and later extended by Shiomi and Maruyama [53],
de Koker [54], Thomas et al. [55], and Feng et al. [56]
According to lattice dynamics, the vibrations of atoms in real
space can be mapped to the time-dependent normal mode
coordinates:

qλ(t ) =
3∑
α

n∑
b

Nc∑
l

√
mb

Nc
ul,b

α (t )eλ∗
b,α exp

[
ik · rl

0

]
. (7)

Here, ul,b
α (t ) is the α component of displacement of the bth

basis atom with mass mb in the lth unit cell from equilibrium

position, eλ∗
b,α is the complex conjugate of the eigenvector

component of the phonon mode λ, n is the total number of
basis atoms in a unit cell, and Nc is the total number of unit
cells. In FD-NMA, the total spectral energy density (SED) is
calculated for each k-point from the sum of the SED’s of all
phonon branches,


(k, ω) =
3n∑
ν


ν (k, ω) =
3n∑
ν

|q̇k,ν (ω)|2, (8)

where


ν (k, ω) = |q̇k,ν (ω)|2 =
∣∣∣∣
∫ ∞

0
q̇k,ν (t )e−iωt dt

∣∣∣∣
2

= Ck,ν(
ω − ωA

k,ν

)2 + �2
k,ν

. (9)

Here, 
ν (k, ω) is the Fourier transform of the time derivative
of qk,ν (t ) and Ck,ν is a constant of fitting related to the normal
mode vibrational amplitude qk,ν,0. By fitting the SED function
at each k-point to 3n Lorentzian forms, we can extract the
anharmonic phonon frequency ω for each phonon mode. The
phonon relaxation time τλ is also obtained from the full width
at half maximum of the fitted curve as τλ = 1/2�k,ν . It is to be
noted here that due to the finite size and periodicity require-
ments of the MD domain, not all k-vectors in the Brillouin
zone can be sampled. Only those k-points in the first Brillouin
zone satisfying the condition e−ik·r = 1 can be resolved in the
MD normal mode analysis, where r = ∑3

i=1 niAi and Ai is the
length vector of the simulation domain in direction i.

We perform FD-NMA on a 12 × 12 × 12 rhombohedral
cell with five basis atoms, and a 12 × 12 × 12 k-point grid
uniformly sampling the first Brillouin zone. The rhombo-
hedral primitive cell is used since the number of phonon
dispersion branches in this case is much less than that obtained
using the hexagonal cell, which makes the SED analysis
simpler. The system is first relaxed under an NPT ensemble
at 300 K for 200 ps and further under an NVE ensemble
for 200 ps. Following this, the system is run in an NVE
ensemble to compute the normal mode amplitudes from the
MD trajectories at an interval of 10 fs, which is shorter than
the shortest phonon time period. The anharmonic phonon
dispersion computed from NMA along the � − Z direction is
shown in Fig. 7(a) along with the harmonic phonon dispersion
computed from GULP for comparison, and also the quasihar-
monic dispersion computed with the lattice constant at 300 K.
It is seen that there is noticeable softening of the phonon
modes at finite temperature, which proves that our developed
interatomic potential can capture the anharmonicity of the
material. The quasiharmonic results are very similar to the
fully anharmonic results, indicating that the frequency shift
is mainly due to the lattice expansion. The phonon relaxation
times predicted by FD-NMA along the � − Z direction are
shown in Fig. 7(b), where it can be seen that the phonon
lifetime decreases with increasing phonon frequency. The
lifetimes of acoustic phonons below 1 THz are very well
fitted with a τ ∝ f −2 form [Fig. 7(c)], which is generally
the power law expression used in many works for calculating
the thermal conductivity analytically. The lifetime of the A1g
phonon mode is predicted by the FD-NMA to be 4.5 ps,
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FIG. 7. (a) Anharmonic phonon dispersion at 300 K from NMA (triangles and broken lines), quasi-harmonic phonon dispersion (300 K)
from LD (dashed lines), and harmonic phonon dispersion (0 K) from LD (solid lines) along the � − Z direction. (b) Relaxation times of
phonons along the � − Z direction. (c) Relaxation times of low-frequency acoustic phonons along � − Z , along with f −2 fitting.

compared to the experimental value of 3.4 ps obtained from
time-resolved reflectivity measurements using femtosecond
pulses [57]. The overall range of phonon lifetimes is also
similar to the phonon lifetimes calculated for Bi2Te3 using
time-domain normal mode analysis by Wang et al. [58].

The phonon relaxation times obtained using FD-NMA and
the group velocities are used in Eq. (6) to calculate the thermal
conductivity of each phonon mode as well as the total thermal
conductivity. Obtaining a converged sum from Eq. (6) requires
proper discretization of the Brillouin zone to ensure we cap-
ture all important phonon modes. Due to the finite size of the
MD simulation domain, the contribution of phonon modes
with very long wavelengths is absent; however, the density
of states for these low frequency modes is low. We have
performed calculations for an 8 × 8 × 8 simulation domain
with an 8 × 8 × 8 k-point grid to test the size effect. The
results for phonon lifetimes and total thermal conductivity
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FIG. 8. Accumulated thermal conductivity (%) with respect to
phonon mean-free path.

are similar to the 12 × 12 × 12 cell system, which suggests
that our k-grid resolution is able to ensure a converged sum.
The total cross-plane thermal conductivity obtained from FD-
NMA is 0.92 W/mK, which agrees very well with the EMD
value of 0.89 W/mK. The difference in the two results can
be attributed to process of fitting the Lorentzian form to a
large number of phonon modes, particularly for the higher fre-
quency peaks which are often clustered together and difficult
to isolate. The accumulation of thermal conductivity in the
cross-plane direction with respect to phonon mean-free path
is shown in Fig. 8, where the mean-free paths along the cross-
plane direction can also be obtained using the relation λ =
(v · ẑ). The results in Fig. 8 show that phonons with mean-free
paths between 3 and 100 nm contribute to around 80% of
the total cross-plane thermal conductivity. The contribution of
acoustic phonons to total thermal conductivity is 80% while
the contribution of optical phonons is 20%, compared to a
35% contribution of optical phonons calculated by Campi
et al. [43] from first principles.

VI. CONCLUSIONS

In summary, we have used DFT to calculate the electronic
band structure of bulk Sb2Te3 and the energies of different
representative configurations away from equilibrium. We then
fit a two-body Morse interatomic potential form to the energy
surface and experimentally observed crystal properties like
lattice constants and bulk modulus. The fitted potential form
can reproduce the lattice structure and acoustic phonon disper-
sion of the crystal in very good agreement with experiment,
indicating that our developed potential is suitable to describe
phonon thermal transport in the material. MD simulations
using the Green-Kubo linear response framework have then
been performed using this interatomic potential, and the lat-
tice thermal conductivity in the in-plane and cross-plane di-
rections have been predicted over a range of temperature from
200–500 K. The in-plane thermal conductivity was found to
vary from 0.9 − 2.6 Wm−1K−1, while the cross-plane thermal
conductivity was found to vary from 0.4 − 1.5 Wm−1K−1 as
the temperature is decreased from 500 K to 200 K. The results
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at room temperature agree well with the range of experimental
values found in literature. The nature of phonon transport in
Sb2Te3 is found to be extremely similar to that in Bi2Te3

as expected, with the cross-plane thermal conductivity much
lower than the in-plane one due to the weak nature of the
van der Waals bonds in the interlayer direction. The modal
decomposition of the cross-plane thermal conductivity is also
performed using FD-NMA. The anharmonic phonon disper-
sion along the � − Z cross-plane direction shows softening of
phonon frequencies, while the acoustic phonons are found to
be approximated well by a f −2 fitting. In addition to being

able to predict the thermal conductivity of bulk Sb2Te3, this
potential may be applied to the study of thermal transport in
Bi2Te3–Sb2Te3 alloys and nanosctructures, which is the scope
of future work.
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