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The spectral Matthiessen’s rule is commonly used to calculate the total phonon scattering rate when multiple
scattering mechanisms exist. Here we predict the spectral phonon relaxation time τ of defective bulk silicon using
normal mode analysis based on molecular dynamics and show that the spectral Matthiessen’s rule is not accurate
due to the neglect of the coupling between anharmonic phonon-phonon scattering τ−1

a and phonon-impurity
scattering τ−1

i . As a result, the spectral Matthiessen’s rule underestimates the total phonon scattering rate and
hence overestimates the thermal conductivity κ of mass-doped and Ge-doped silicon by about 20–40%. We have
also directly estimated this coupling scattering rate, so-called coupled five-phonon scattering τ−1

couple, and achieved
good agreement between τ−1

a + τ−1
i + τ−1

couple and the total scattering rate τ−1
tot .
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The spectral Matthiessen’s (M’s) rule is a general rule
to estimate the total spectral scattering rate when multiple
scattering mechanisms exist at the same time [1]. In most
solids, phonon transport is governed by phonon-phonon scat-
tering τ−1

a,λ, phonon-impurity scattering τ−1
i,λ , phonon-boundary

scattering τ−1
b,λ , etc., where λ specifies a phonon mode λ =

(k,ν) with wave vector k and dispersion branch ν. By
adding all of these factors, the spectral M’s rule gives the
total scattering rate as τ−1

tot,λ = τ−1
a,λ + τ−1

i,λ + τ−1
b,λ + · · · . This

scattering rate plays a crucial rule in predicting thermal
conductivity κ based on the Boltzmann transport equation
(BTE) κz = 1

V

∑
λ v2

z,λcλτλ, where vz is the projection of
the phonon group velocity along the transport z direction,
V is the volume, cλ is phonon specific heat per mode [2],
and the summation is done over all the resolvable phonon
modes [3]. This approach has been applied to predict the
thermal conductivities of isotope-rich semiconductors [4–6],
alloys [7–9], nanostructures [10,11], etc. [12]. However, as
an empirical rule, the M’s rule assumes that the scattering
mechanisms are independent, which was usually not verified
in those calculations employing them. The spectral M’s rule
has not been examined yet, although the failures of the
conventional gray M’s Rules, i.e.,

∑
μ−1

j = μ−1
tot or

∑
σ−1

j =
σ−1

tot for electrical transport [1,13] and
∑

�−1
j = �−1

tot or∑
κ−1

j = κ−1
tot for phonon transport [14,15] have been studied

extensively, where μ, σ , and � are the electron mobility,
electrical conductivity, and effective phonon mean free path,
respectively. Take phonon transport for instance, the correct
approach is to first obtain the spectral total relaxation time
using the spectral M’s rule τ−1

tot,λ = ∑
j τ−1

j,λ and then derive the
thermal conductivity using the Boltzmann transport equation
(BTE) κtot ∼ ∫

c(ω)vg(ω)/v2
p(ω)ω2τtot,λ(ω)dω, where c, vg ,

and vp are the phonon specific heat, group velocity, and phase
velocity, respectively. It can be conveniently shown that only
if all the τj ’s have the same ω dependence, one can first use
BTE to obtain the partial thermal conductivity due to one
scattering mechanism κj ∼ ∫

c(ω)vg(ω)/v2
p(ω)ω2τj,λ(ω)dω
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and then use the gray M’s rule to obtain the same total thermal
conductivity κ−1

tot = ∑
j κ−1

j , i.e., the gray M’s rule is valid.
However, in general the τj ’s have different ω dependencies.
Therefore, the failure of the gray M’s rule can be expected,
while the spectral M’s rule has been assumed to be valid all
the time. Thus in this paper, our objectives are to (1) predict the
spectral phonon scattering rate τ−1

tot,λ and thermal conductivity
κ without touching the detailed phonon scattering processes
or the spectral M’s rule, and (2) examine the accuracy of
the spectral M’s rule and provide physical interpretation and
quantitative correction.

We take defective bulk Si as an example and calculate
τ−1
a,λ, τ−1

i,λ , and τ−1
tot,λ in three independent ways. τ−1

a,λ is obtained
by performing the phonon normal mode analysis (NMA)
[12,16–21] on pristine silicon, in which only phonon-phonon
scattering occurs. τ−1

i,λ is calculated from the Tamura’s formal-
ism, and τ−1

tot,λ is calculated by NMA on the defective silicon.
The spectral M’s rule is examined by comparing τ−1

a,λ + τ−1
i,λ

to τ−1
tot,λ. To examine the accuracy of these scattering rates, we

compare the thermal conductivity κ predicted from τ−1
a,λ + τ−1

i,λ

or τ−1
tot,λ with that from the Green-Kubo method based on MD.

The scattering rates τ−1
a,λ and τ−1

tot,λ were obtained by performing
the following NMA on pristine silicon and on defective silicon,
respectively,

qλ(t) =
3∑
α

n∑
b

Nc∑
l

√
mb

Nc

ul,b
α (t)eλ∗

b,α exp
[
ik · rl

0

]
, (1)


λ(ω) = |F[q̇λ(t)]|2 = Cλ(
ω − ωA

λ

)2 + (
τ−1
λ

)2
/4

. (2)

Here, ul,b
α (t) is the αth component of the time dependent

displacement of the bth basis atom in the lth unit cell, e

is the phonon eigenvector, r0 is the equilibrium position,
F denotes the Fourier transformation, and 
λ(ω) is called
spectral energy density. Cλ is a constant for a given λ. 
λ(ω)
is a Lorentzian function with peak position ωA

λ and full width
τ−1
λ at half maximum. By MD simulation the time dependent

atomic velocity u̇ is obtained and substituted into Eqs. (1) and
(2) to obtain the spectral phonon scattering rate τ−1

λ . With
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FIG. 1. (Color online) Sketches of the lattice structures of (a) the
pristine c-Si, (b) the mass-doped c-Si ( mi Si-Si), (c) the 73Ge-doped
c-Si ( 73Ge-Si), and (d) the vacancy-doped c-Si (V-Si).

this method, we can obtain τ−1
a,λ of pristine silicon and τ−1

tot,λ
of impurity-doped silicon independently. In the evaluation
of τ−1

tot,λ, the intrinsic lattice anharmonicity and the extrinsic
impurity are treated as a combined perturbation to the phonon
normal modes. This method does not touch the details of the
scattering processes or the spectral M’s rule.

From the second-order perturbation theory [1,22], Tamura
gave the isotope scattering rate by Fermi’s golden rule (FGR)
[23],

τ−1
i,λ = π

2Nc

ω2
λ

n∑
b

∑
λ′ �=λ

gb

∣∣eλ
b · eλ′∗

b

∣∣2
δ(ωλ − ωλ′), (3)

where gb = ∑
β fβb(1 − mβb/m̄b)2 characterizes the magni-

tude of mass disorder, with β, fβb, and m̄b indicating the
isotope types, the fraction of isotope in the bth basis atom,
and the average atom mass at the bth basis. Equation (3)
is equivalent to πgω2

λD(ωλ)/2 for cubic lattice structures,
where D(ω) is the normalized density of states. The Tamura’s
formalism was first derived for the calculation of isotope
scattering rate but recently has been applied to many other
impurities with bonding change [7–9,24,25]. In the last part of
the paper we study the contribution of the impurity bonding
strength to the total scattering rate. In the long wavelength
approximation (LWA) [22,23,26], Eq. (3) is reduced to the
∼ω4 relation, τ−1

i = Vcnc(�m)2

4πvgv2
pm2

c
ω4, where Vc is the volume of

a unit cell, nc is the concentration of the impurities, and vg

and vp are the group and phase velocities of the phonon,
respectively.

We investigate the pristine c-Si, the mass-doped c-Si ( mi Si-
Si), the 73Ge-doped c-Si ( 73Ge-Si), and the vacancy-doped
c-Si (V-Si) bulks [27,28] at classical 300 K with the sketches
of the lattice structures shown in Fig. 1. Here the mi Si-Si is to
substitute some of the original Si atoms with mass mi while
keeping the bonds unchanged. The NMA and the Tamura’s
formalism rely on MD simulations and lattice dynamics
(LD) calculations, which are conducted in LAMMPS [29]
and GULP [30], respectively. All the scattering rates are
calculated based on the Tersoff interatomic potential [31]. The
domain size and total simulation time are set as 8 × 8 × 8
conventional cubic cells and 10 ns to eliminate the size and
time effects [19]. Each time step is set as �t = 0.5 fs to
resolve all the phonon modes. From the simulation results,
it is found that one impurity affects at most the motions
of its nearest (2.3 Å) and second nearest (3.8 Å) neighbors
because of the approximate tight binding force in silicon. In
our simulation, the impurities were randomly distributed with
the distance between each of the two defects being larger
than 11 Å to ensure the defects do not influence each other.

FIG. 2. (Color online) (a) The phonon scattering rates of the TA
mode in the [100] direction in pristine c-Si and 0.4% 42Si doped
silicon. (b) The thermal conductivity of 42Si-Si calculated from four
different methods as a function of the 42Si concentration.

Three or more independent simulations are conducted for each
case to minimize the statistical error. In the lattice dynamics
calculation we employed a k grid of 96 × 96 × 96 to obtain
results as accurately as possible, since Eq. (1) requires the
evaluation of delta functions.

Figure 2 (a) gives the phonon scattering rates of the TA
mode in the [100] direction for 0.4% 42Si-Si at classical
300 K. The phonon-phonon scattering rate τ−1

a,λ scales as
∼ω2 at low frequencies but deviates at higher frequencies.
Such a trend was also seen in previous studies [20,32]. The
τ−1
i,λ calculated from Eq. (3) is found to be exactly the same

with πgω2
λD(ωλ)/2 as mentioned above. At low frequency,

τ−1
i is about one order of magnitude lower than τ−1

a . As the
frequency increases, τ−1

i becomes even higher than τ−1
a due

to the increase of the density of states. We also note that
the impurity scattering rate obeys the ∼ω4 relation given by
the LWA (dashed black line) for the phonon frequency below
1.5 THz. For higher frequency where phonon wavelength
is short and comparable with the defect size, the Rayleigh
scattering model breaks down giving way to the Mie scattering
model, and thus the ∼ω4 frequency dependence gradually
fades with increasing frequency [33]. Interestingly, we find
that the spectral M’s rule, τ−1

a + τ−1
i (open green circle),

underestimates the phonon total scattering rates (solid red
circle) by 10–50% for different frequencies. To ensure this
discrepancy is not due to the different domain sizes used in
the NMA and Tamura’s formula, we have performed both
the MD simulations and FGR calculations in the domain of
16 × 16 × 16 unit cells and the same-size k mesh, respectively.
We have found that such discrepancy indeed exists, especially
in the mid-frequency range. Actually the impurity scattering
rates do not vary much when the k-mesh size changes from
96 × 96 × 96 to 16 × 16 × 16 since the latter is already
dense enough to obtain a good phonon density of states. In
our work, all the calculations are done based on the same
Tersoff potential, and the comparison between the results
of different methods is self-consistent. Thus, the conclu-
sions still hold although the dispersion has discrepancy with
experiments.
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FIG. 3. (Color online) The comparison of the thermal conduc-
tivity calculated from GK-MD and the M’s rule for 1% mi Si-Si at
classical 300 K.

The thermal conductivity κ as a function of the 42Si
concentration at classical 300 K is shown in Fig. 2(b).
The NMA and GK are both based on classical equilibrium
molecular dynamics and the same interatomic potential. In
our calculation results, their agreement is good (within 5%).
As seen in Fig. 2(b) for the mass doped bulk silicon, the NMA
thermal conductivity values (red circles) match excellently
with GK values (black squares). For pristine c-Si, our Green-
Kubo and NMA methods give consistent thermal conductivity
values. In contrast, the κ calculated from the spectral M’s
rule [green line] has about 20–40% overestimation. This
overestimation has also been observed in the doped silicon
with a broad range of mass (28–73) at a concentration of 1%,
as seen in Fig. 3.

The physical mechanism for the inaccuracy of the spectral
M’s rule is explored from the second-order perturbation theory
[34]. The phonon scattering operator and rate for a defective
material are described as

Hscatt=Ha + Hi + (Ha + Hi)(E + H0 + iε)−1(Ha + Hi), (4)

τ−1
tot,λ = τ−1

a,λ + τ−1
i,λ + τ−1

couple,λ, (5)

where H0 is the harmonic lattice Hamiltonian, and ε is a
positive infinitesimal [34]. The first two terms Ha and Hi

are the perturbation Hamiltonians from intrinsic anharmonic-
ity and extrinsic impurity, leading to intrinsic anharmonic
phonon-phonon scattering τ−1

a,λ and extrinsic phonon-impurity
scattering τ−1

i,λ , respectively. The former includes the intrinsic
three-phonon, four-phonon, five-phonon processes, etc., and
the latter involves two phonons. The third operator in Eq. (4),
which was usually ignored by researchers, represents the
coupling between Ha and Hi and may involve five or more
phonons. To the lowest order of the coupling, the coupled five-
phonon scattering (three phonons in three-phonon scattering
and the two phonons in the impurity scattering) provides
additional channels for one mode to scatter to the other
mode and thus increases the scattering rate, as shown in
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FIG. 4. (Color online) Brief sketches for illustrating (a) the in-
dependent scattering mechanisms and (b) the coupled scattering
mechanisms. The sketches of coupling scattering are (c), (d), (e), and
(f) with detailed descriptions found in Refs. [34,35]. The × represents
the scattering by impurity.

Figs. 4(a) and 4(b). The detailed sketches for the coupled
five-phonon process are shown in Figs. 4(c)–4(f). Note that
this coupled five-phonon process is different from the intrinsic
five-phonon process which has already been included in the
term τ−1

a,λ. The term “coupling” is used because the transitions
occur between the intermediate quantum states of the three-
phonon process and impurity-phonon process with detailed
sketches shown in Refs. [34,35]. This coupling is calculated
by the second-order perturbation theory and is different from
the meaning of “interplay” discussed in Refs. [36,37] where
the spectral M’s rule was still used [38].

To roughly estimate the contribution of the coupled five-
phonon scattering, we applied the approximate expression
derived by Carruthers from Fermi’s golden rule [34],

τ−1
couple,λ = 3g

4

(
3

(
ω

�ω

)2

+ 3

4
+ 6πω̄4

τ−1
tot,λω

3
0

)
τ−1
a,λ, (6)

where �ω measures “the ‘lack’ of energy conservation by the
intermediate phonons” [34] in the five-phonon process, and ω0

is Debye frequency [39]. This coupled five-phonon scattering
rate, however, has, to our knowledge, never been evaluated. We
substitute the τ−1

tot obtained from NMA into Eq. (6) to estimate
the coupling scattering τ−1

couple,λ and check the agreement

between τ−1
tot,λ and τ−1

a,λ + τ−1
i,λ + τ−1

couple,λ. By including the

estimated coupling scattering rate τ−1
λ,couple, a good agreement

is achieved for both τ and κ as seen in Fig. 2. The frequency
dependence of τ−1

couple,λ in Fig. 2(a) is explained by Eq. (6)

as follows. At low frequencies (1–5 THz), τ−1
couple,λ increases

with frequency due to the increasing τ−1
a,λ, while at higher

frequencies (6–7 THz), it decreases with frequency since the
increasing τ−1

tot,λ brings down the third term in the bracket.
Physically, at higher frequencies the large density of states
allows phonon states to transit into other states quickly by
impurity scattering, and thus the intermediate states required
in the coupling scattering are probably difficult to produce.
Generally, the maximum τ−1

a,λ occurs at the mid-frequencies
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(a) (b)

FIG. 5. (Color online) Thermal conductivity of (a) V-Si and
(b) 73Ge-Si calculated from GK-MD, NMA, and the spectral M’s
rule as a function of vacancy or Ge concentration at classical 300 K.
The blue triangles label κ’s of 73Si-Si as references.

where the phonons have relatively high τ−1
a,λ as well as low

density of states.
Figure 5(a) shows κ of V-Si as a function of vacancy

concentration calculated from different methods. We find that
even for bond-missing defects our NMA (red circle) presents
excellent agreement with GK-MD (black square), indicating
that treating the impurities and anharmonicity as one combined
perturbation to calculate total scattering rates is reasonable.
The spectral M’s rule (yellow line) overpredicts κ of V-Si
by about 100–150% at a vacancy concentration of 0.2–1%.
The discrepancy comes from two aspects: (1) the spectral
M’s rule neglects the coupling between phonon-phonon
and phonon-defect scattering rates as elaborated earlier, and
(2) the Tamura’s formalism only captures the scattering by
mass disorder while ignoring the bond changes. As for 73Ge-Si
shown in Fig. 5(b), the spectral M’s rule overpredicts about
20–40% of κ . Most of this discrepancy comes from the
coupling, since we find that 73Ge-Si and 73Si-Si have almost
the same thermal conductivity, indicating that the Ge-Si bond
provides negligible scattering compared to the mass disorder
introduced by Ge atoms. In addition, the overprediction of κ by
the spectral M’s rule is also seen in the high Ge concentration
range [34,40].

For two materials having the same light-doping level
(τ−1

i,λ � τ−1
a,λ), the coupling strength, defined by τ−1

couple,λ/τ
−1
tot,λ,

is approximately 1/τ−1
a,λ and is higher for the higher-κ material

which has a lower τ−1
a,λ. On the other hand, if the doping

level is high (τ−1
i,λ � τ−1

a,λ), the coupling strength ∼τ−1
a,λ/τ

−1
i,λ

is higher for the lower-κ material which has a higher
τ−1
a,λ.

For general materials, the phonon scattering rates as a
function of doping concentration are shown in Fig. 6. The
coupling scattering rate initially increases rapidly with doping
in the light doping regime and then increases linearly and
more slowly in the heavy doping regime. As a result, a
maximum of the coupling strength occurs when the system
transits from the light to heavy doping. For example, for
silicon doped with Ge in our work as shown in Fig. 5(b),
the coupling strength increases to 0.4 as the doping level
increases to 2%. On the other hand, at the concentration of
50% which is in the alloy limit, the coupling strength is

FIG. 6. (Color online) A sketch to show the scattering rates and
the coupling effect (inset) as a function of doping level.

about τ−1
couple/τ

−1
tot ≈ 4τ−1

a /τ−1
tot ≈ 4(1/156)/(1/7) ≈ 0.2. Here

we used the approximation of τ−1
couple ≈ 10gτ−1

a [34] with
g ≈ 0.4 in SiGe alloy and the fact that pristine silicon and
SiGe alloy have the thermal conductivities of 156 W/mK
and 7 W/mK, respectively. Carruthers et al. hypothesized that
this coupled-five-phonon scattering caused the overestimation
of the thermal conductivity of SiGe alloy in early years
[34,40], though a quantitative evaluation was not done in their
work. The concept of the coupling effect can be extended
to all doped material systems, and the general trends should
be similar to Fig. 6. For example, the coupling strength
in PbTe/Se alloy is estimated to be about 9%, which may
account for the overestimation in Ref. [9]. In Ref. [7], Garg
et al. included the coupling implicitly by calculating the
three-phonon scattering rates in a large SiGe alloy supercell
using fully-quantum density functional perturbation theory.
Although the five-phonon processes were implicitly included
in prior calculations of the total phonon scattering rates, we
have isolated the scattering rate due to five-phonon processes
only.

To conclude, without touching the details of the phonon
scattering processes, we have used the NMA approach to
predict the thermal properties of defective materials more
accurately than the spectral M’s rule. The spectral M’s
rule is found to overpredict the phonon relaxation time and
thermal conductivity because the spectral M’s rule does
not take into account the coupling between anharmonic
phonon-phonon scattering and impurity scattering. Our re-
sults demonstrate one system which has strong coupling
between different scattering mechanisms and estimate the
coupling scattering rates with good quantitative accuracy.
Such coupling exists in many different systems of solids
and can be explored for lower κ as well as higher ZT for
thermoelectrics.
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Brown for proofreading the manuscript, and Yan Wang for
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Network for Computational Nanotechnology (NCN). The
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