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Steady-state thermal transport in nanostructures with dimensions comparable to the phonon

mean-free-path is examined. Both the case of contacts at different temperatures with no internal

heat generation and contacts at the same temperature with internal heat generation are considered.

Fourier’s law results are compared to finite volume method solutions of the phonon Boltzmann

equation in the gray approximation. When the boundary conditions are properly specified, results

obtained using Fourier’s law without modifying the bulk thermal conductivity are in essentially

exact quantitative agreement with the phonon Boltzmann equation in the ballistic and diffusive

limits. The errors between these two limits are examined in this paper. For the four cases

examined, the error in the apparent thermal conductivity as deduced from a correct application of

Fourier’s law is less than 6%. We also find that the Fourier’s law results presented here are nearly

identical to those obtained from a widely used ballistic-diffusive approach but analytically much

simpler. Although limited to steady-state conditions with spatial variations in one dimension and to

a gray model of phonon transport, the results show that Fourier’s law can be used for linear trans-

port from the diffusive to the ballistic limit. The results also contribute to an understanding of how

heat transport at the nanoscale can be understood in terms of the conceptual framework that has

been established for electron transport at the nanoscale. Published by AIP Publishing.
[http://dx.doi.org/10.1063/1.4974872]

I. INTRODUCTION

The treatment of heat transport in nanostructures with

dimensions comparable to the phonon mean-free-path is a

problem of both fundamental and practical interest.1–3

Beginning with the work of Joshi and Majumdar,4 much has

been learned about thermal transport at the nanoscale (as

reviewed, for example, in Chapter 7 of Ref. 3). Rigorous

techniques, such as molecular dynamics simulations,5 or solv-

ing the phonon Boltzmann transport equation (BTE)

directly,6 have been essential in understanding nanoscale heat

transport, but physically sound, analytically compact, and

computationally efficient approaches are also much needed.

Majumdar showed how to use Fourier’s law at the nanoscale

by replacing the thermal conductivity with a size-dependent,

apparent thermal conductivity.7 Chen and Zeng showed that

the direct use of Fourier’s law without modifying the thermal

conductivity can produce quite accurate results, at least for

one-dimensional problems.8 The key is to use appropriate

(temperature-jump) boundary conditions. Because of the

need for computationally efficient approaches, extensions of

Fourier’s law have been considered by many researchers

(e.g., see Refs. 9–11, and references therein).

In this paper, we examine the use of the unmodified

Fourier’s law at the nanoscale, but with special boundary

conditions at the contacts. In this regard, the recent work of

Peraud and Hadjiconstantinou10 is relevant. Peraud and

Hadjiconstantinou present asymptotic expansion solutions of

the Boltzmann equation focusing on small Knudsen num-

bers.10 Our paper examines the use of Fourier’s law across

the entire diffusive to ballistic spectrum. Peraud and

Hadjiconstantinou show that the zeroth order solution is the

classic Fourier’s law solution with fixed temperatures at the

boundaries, but the first- and second-order solutions involve

temperature jumps at the boundaries. Their analysis shows

that at least up to second order, the thermal conductivity in

the bulk is the unmodified bulk conductivity—even in small

structures. They point out that there is no justification for

introducing an effective thermal conductivity in small struc-

tures; the reduction of thermal transport is due to the temper-

ature jump boundary conditions, not to a reduced thermal

conductivity. These are the same conclusions that we arrive

at. The difference is that Peraud and Hadjiconstantinou treat

the full BTE by asymptotic expansion and focus on the small

Knudsen number regime. In contrast, we first simplify the

BTE (the McKelvey–Shockley equations) and then show

that these equations lead without further approximation to

Fourier’s law and that temperature jump boundary conditions

arise naturally from using physically correct boundary condi-

tions for the BTE itself. Peraud and Hadjiconstantinou intro-

duce kinetic boundary layer functions to treat the non-lineara)Electronic mail: jan.kaiser@rub.de
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temperature profiles near the boundaries. We ignore these

boundary layers and treat the entire region inside the contacts

with Fourier’s law. For moderate Knudsen numbers, our

solution is less accurate, but in the diffusive limit and the

ballistic limit (which is not examined in Ref. 10), our solu-

tion is exact. The main conclusion of our work agrees with

that of Peraud and Hadjiconstantinou—that one should use

the unmodified Fourier’s law inside a nanostructure, but the

boundary conditions must be modified to a jump type bound-

ary condition.

This paper builds on the work of Maassen and

Lundstrom12 who extended the work by Chen and Zang8 by

introducing a consistent definition of temperature at the

nanoscale (analogous to the way that electrochemical poten-

tials are defined at the nanoscale15) and by showing how to

derive Fourier’s law without assuming local thermodynamic

equilibrium. The work reported here extends that in Ref. 12

by considering the important case of nanostructures with

internal heat generation (IHG) and by carefully comparing

results obtained from Fourier’s law to numerical solutions to

the phonon BTE assuming a simple, steady-state, gray

model. This comparison confirms that Fourier’s law produ-

ces exact solutions in the diffusive and ballistic limits, and it

quantifies the errors between these limits. The Fourier’s law

analysis presented here also provides new insights into heat

transport in nanostructures with internal heat generation,

such as how to describe temperature in terms of the tempera-

tures of forward and reverse fluxes and the fact that even

under diffusive conditions, temperature jumps can occur at

contacts. We show that the critical issue is not the validity of

Fourier’s law itself but rather the boundary conditions to

apply to the heat equation.

The six model structures shown in Fig. 1 were recently

examined by Hua and Cao16 who used a simple gray model

and solved the steady-state phonon BTE by Monte Carlo

techniques. Structures (a) and (b) in Fig. 1 are infinite in the

y- and z-directions, so transport is one-dimensional.

Structures (c) and (d) are thin in the y-direction and assume

diffusive scattering at the boundaries. Structures (e) and (f)

are nanowires with diffusive boundary scattering. In this

paper, we consider structures (a)–(d) using material parame-

ters appropriate to silicon at room temperature (thermal con-

ductivity, jbulk ¼ 160 W/(mK); specific heat, CV ¼ 1:63

�106 J/(m3 K); and sound velocity, vs ¼ 6400 m/s, s ¼ 7:19

ps, which results in a phonon mean-free-path of K ¼ 46:0
nm). Structures (e) and (f) of Fig. 1 are discussed in the sup-

plementary material. We will compare results obtained from

Fourier’s law to those obtained from a finite volume method

(FVM) solution to the phonon BTE.17 In the supplementary

material, we compare our solution to the results of Hua and

Cao obtained by solving the same gray model phonon BTE

using Monte Carlo techniques.16,18

The paper is organized as follows. In Sec. II, the use of

Fourier’s law at the nanoscale12–14 is briefly reviewed.

Results are presented in Sec. III, and the results are discussed

in Sec. IV, which also discusses the source of the differences

in the two methods observed in the quasi-ballistic regime.

Section V summarizes the conclusions of the paper.

II. FOURIER’S LAW AT THE NANOSCALE

The use of Fourier’s law at the nanoscale has been dis-

cussed in Refs. 12–14; only a brief summary for the steady-

state condition of interest in this paper is provided here.

FIG. 1. Model structures examined:

with no internal heat source and con-

tacts at different temperatures (a), (c),

and (e) and with an internal heat source

and contacts at the same temperature

(b), (d), and (f). (After Hua and Cao.16)
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More details are provided in the supplementary material and

in Ref. 12 (see also the supplementary material for Ref. 12).

We begin with the steady-state flux equations as written

by Shockley19,20

dFþQ xð Þ
dx

¼ �
FþQ xð Þ

k
þ

F�Q xð Þ
k
þ

_S

2
; (1a)

dF�Q xð Þ
dx

¼ �
FþQ xð Þ

k
þ

F�Q xð Þ
k
�

_S

2
; (1b)

where FþQðxÞ is the forward-directed heat flux, F�QðxÞ is the

negative-directed heat flux, and k is the “mean-free-path for

backscattering” (see the appendix in Refs. 20 and 21). The

term, _S, is a heat generation term assumed to be spatially

uniform in this paper. The mean-free-path for backscattering

is related to the conventional mean-free-path, K ¼ vss
20,21

k ¼ 4

3
K : (2)

Temperatures can be associated with the forward and reverse

fluxes12

FþQ ¼ vþx
CV

2
Tþ (3a)

F�Q ¼ vþx
CV

2
T�; (3b)

where vþx ¼ vs=2 is the average þx-directed velocity, CV is

the specific heat per unit volume, and vs is the sound veloc-

ity. Tþ and T� should be understood to be temperatures rela-

tive to a background temperature, T0.12 Small deviations in

temperature are assumed so that the specific heat can be

treated as a constant. Our use of two different temperatures

for the forward and reverse streams has been discussed in

Ref. 12 and is analogous to how the electrochemical poten-

tial has been defined at the nanoscale.15 As discussed in Ref.

12, the forward and reverse halves of the distribution are

assumed to be near-equilibrium distributions characterized

by two different temperatures. Although each half is a near-

equilibrium distribution, the overall distribution can be very

far from equilibrium as the ballistic limit is approached.

Local thermodynamic equilibrium, which would characterize

the distribution with a single temperature, is not assumed.

Finally, we note that the flux equations can be derived from

the Boltzmann transport equation. They can be regarded as a

type of differential approximation to the equation of phonon

radiative transport (EPRT) in which we integrate separately

over the forward and reverse directions rather than over all

directions.4,7,22 In the supplementary material, we relate the

flux equations to the EPRT.

By adding and subtracting Eqs. (1a) and (1b), we find

dFQ

dx
¼ _S; (4a)

FQ ¼ �jbulk
dT

dx
; (4b)

where

FQðxÞ ¼ FþQðxÞ � F�QðxÞ (5)

is the net heat flux,

jbulk ¼
vþx k

2
CV ¼

1

3
vsKCV (6)

is the thermal conductivity, and

T ¼ ðTþ þ T�Þ=2 (7)

is the average temperature of the forward and reverse heat

fluxes. Equations (4a) and (4b) lead to a steady-state heat dif-

fusion equation,

d2T

dx2
¼ �

_S

jbulk
; (8)

that is mathematically identical to Eq. (1). Equation (1)

applies from the ballistic to diffusive limits. Accordingly, Eq.

(8) also applies from the ballistic to diffusive limits. The ther-

mal conductivity, jbulk, is not size dependent (unless we

bring in surface roughness scattering as discussed later for

thin films). The fact that Fourier’s law and the heat diffusion

equation can be used from the diffusive to ballistic limits

with the bulk thermal conductivity has been discussed in Ref.

12. We must, however, be careful about the boundary condi-

tions when using Eq. (8).12 We shall see that a size dependent

“apparent thermal conductivity” results when the proper

boundary conditions are used (see Eq. (15) below). Peraud

and Hadjiconstantinou reached the same conclusion.10

The boundary conditions for the phonon BTE are the

incident heat fluxes from the two contacts. (Ideal black body

contacts are assumed.) The temperatures at the two ends of

the film are a result of the calculation and can only be

imposed in the diffusive limit. As shown in Ref. 12, when

the correct boundary conditions are used, temperature jumps

can occur—even for ideal contacts. The temperatures at the

two contacts can be written as

Tð0þÞ ¼ TL � DTð0Þ; (9a)

TðL�x Þ ¼ TR þ DTðLxÞ; (9b)

where TL is the temperature of the left contact and TR is the

temperature of the right contact. The temperature jumps can

be shown to be the product of the net heat flux and one-half

of the ballistic thermal resistance12

DT 0ð Þ ¼ FQ 0ð Þ RBA

2
; (10a)

DT Lð Þ ¼ FQ Lð Þ RBA

2
; (10b)

where A is the cross-sectional area and

RBA ¼ 2

CVvþx
(11)

is the ballistic thermal resistance. Note that RB is a funda-

mental thermal boundary resistance for the assumed ideal,

reflectionless (black) contacts. Real contacts would have

additional interface resistance.
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To summarize, we solve Eq. (8) with boundary condi-

tions specified by Eqs. (9)–(11). After solving for TðxÞ, the

directed temperatures can be obtained from

TþðxÞ ¼ TðxÞ þ FQðxÞRBA=2; (12a)

T�ðxÞ ¼ TðxÞ � FQðxÞRBA=2: (12b)

The use of these equations will be illustrated as we discuss

the model structures shown in Fig. 1.

Finally, we note that the specification of boundary con-

ditions in terms of the ballistic resistances simplifies the

calculations and may be useful in other contexts as well. For

example, it is well-known that thermal transport can be

simulated using an electrical network analogy.23 Using the

equivalent circuit in Fig. 2 below, all of the steady-state,

transient, and small-signal results presented in Refs. 12–14

(as well as all of the results to be reported in this paper) can

be obtained by circuit simulation. This equivalent circuit

describes thermal transport from the ballistic to diffusive

limits and is identical to the standard equivalent circuit for

thermal transport except for the addition of one-half of the

ballistic resistance at each of the two contacts.23

III. RESULTS

In this section, four of the cases illustrated in Fig. 1 are

considered. In each case, we present Fourier’s law solution

and compare it to finite volume method (FVM) solutions of

the BTE.17

A. Cross-plane nanofilm with no internal heat
generation

Consider first the case of Fig. 1(a), where the contacts

are at different temperatures, and there is no internal heat

source. The length in the y-direction is assumed to be long

enough so that lateral boundaries have no influence on the

phonon transport. According to Eq. (8) with _S ¼ 0, the tem-

perature profile is linear, so we find

FQ ¼ jbulk
TL � DT � TR þ DTð Þ

Lx

� �
: (13)

Using Eq. (10) for DT ¼ DTðx ¼ 0Þ ¼ DTðx ¼ LxÞ, we find

FQ ¼ japp
TL � TR

Lx

� �
; (14)

where

japp ¼
jbulk

1þ k=Lx
¼ jbulk

1þ 4Knx=3
(15)

is the apparent thermal conductivity, which differs from the

bulk thermal conductivity, jbulk, due to quasi-ballistic pho-

non transport in the x-direction. The Knudsen number, Knx,

is defined as Knx � K=Lx.

The temperature profile is

T xð Þ ¼ TL � DTð Þ 1� x

Lx

� �
þ TR þ DTð Þ x

Lx

� �
(16)

and the temperature jumps are obtained from Eq. (10) as

DT ¼ 1

2

k
kþ Lx

� �
TL � TRð Þ ¼ T

2
TL � TRð Þ

¼ 1

2

TL � TR

1þ 3= 4Knxð Þ

� �
: (17)

The temperature jump is one-half the phonon transmis-

sion, T , times the difference in the contact temperatures.

The last expression on the RHS is Eq. (27) in Ref. 18. The

result has been obtained a number of times in the past using

a variety of methods; it results here from a simple solution to

the heat equation using Fourier’s law and appropriate bound-

ary conditions. Note that Eq. (17) applies in both the ballistic

to diffusive limits and in between these limits.

The normalized temperature profiles for several differ-

ent Knudsen numbers are plotted in Fig. 3(a), which com-

pares Fourier’s law solution as given by Eq. (16) to FVM

BTE simulations. In the diffusive limit, TðxÞ varies linearly

from TL to TR and both solutions agree. Near the ballistic

limit (Knx¼ 100 in Fig. 3(a)), TðxÞ ¼ ðTL þ TRÞ=2, and

Fourier’s law gives the correct answer. Figure 3(a) shows

differences in the quasi-ballistic regime (1 < Knx < 10),

which get smaller for Knx � 1 and for Knx � 10. We con-

clude that for case (a) in Fig. 1 (which is much like the case

treated in Ref. 12), Fourier’s law with correct boundary con-

ditions in the heat equation provides an exact description of

ballistic and diffusive transport and an approximate solution

between those limits.

Figure 3(b), a plot of the normalized temperature jump

vs. Knudsen number, shows the differences between

Fourier’s law solution and the FVM BTE solution more

clearly. The differences first increase as Knx increases and

then decrease as Knx continues to increase towards the ballis-

tic limit. The error vs. Knx is also plotted in Fig. 3(b), which

shows that the maximum error occurs at Knx ¼ 2:3 and is

less than 4%. Fourier’s law is exact in the ballistic and

FIG. 2. Equivalent circuit for the treatment of thermal transport from the

ballistic to diffusive limits. The circuit simply adds ballistic contact resistan-

ces to the standard, diffusive equivalent circuit.23 Here, Rth ¼ dx=ðjbulkAÞ
and dLth ¼ sQ dRth, where sQ is a scattering time in the Catteneo equation,13

and dCth ¼ A CV dx. For a typical problem, the structure would be divided

into several sections to spatially resolve the temperature profiles, but the bal-

listic resistors should only be included at the two contacts (i.e., there would

be several sections like that in the dashed rectangle, but only two ballistic

resistors).
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diffusive limits (small numerical errors are seen in the FVM

solution because the BTE becomes stiff in the diffusive

limit).

B. Cross-plane nanofilm with internal heat generation

We turn next to the case shown in Fig. 1(b), cross-plane

heat transport with a uniform internal heat generation and

both contacts at the same temperature, TL ¼ TR ¼ T0. This

problem has been considered by Zeng and Chen24 and by

Bulusu and Walker,25 who solved the one-dimensional pho-

non BTE exactly, and recently by Hua and Cao,16 who

solved the two-dimensional phonon BTE by Monte Carlo

simulation.

Equation (8) can be solved to find

T xð Þ ¼
_S

2jbulk

 !
L� xð Þxþ Tb; (18)

where we are careful not to assume Tb ¼ T0. The tempera-

tures at the boundaries are obtained from Eq. (10) with

DTð0Þ ¼ �ðTb � T0Þ ¼ �DTðLxÞ:

We find

jDTj ¼ Tb � T0 ¼
_SL

2

� �
1

Cvvþx
: (19)

The maximum temperature occurs at x ¼ Lx= 2. From

Eqs. (18) and (19), we find

dT

jDTj ¼
T Lx=2ð Þ � Tb

Tb � T0

¼ Lx

2k
¼ 1

8Knx=3
; (20)

where dT ¼ Tðx ¼ Lx=2Þ � Tb. The solution is sketched in

Fig. 4. It is interesting to note that the temperature jumps at

the boundaries do not depend on the mean-free-path, but the

rise in temperature inside the film does. The more diffusive

the sample, the higher the peak temperature. The more bal-

listic the sample, the lower the peak temperature until the

ballistic limit is reached where TðxÞ ¼ Tb. Note that a tradi-

tional Fourier’s law solution to this problem (i.e., assuming

that Tð0Þ ¼ TðLÞ ¼ T0) would be incorrect even if Lx � K,

but the error would be small because the temperature jump

at the boundary, DT, would be much less than the tempera-

ture rise inside the structure, dT.

Figure 5(a) plots the normalized temperature, ðTðxÞ
�TbÞ=ðTb � T0Þ vs. normalized distance, x=Lx for several

different Knudsen numbers and compares our Fourier’s

law solution to FVM BTE simulations.17 As Knx ! 0,

ðTðx ¼ Lx=2Þ � TbÞ=ðTb � T0Þ ! 1, and the agreement in

the diffusive limit is excellent. As Knx !1, ðTðx ¼ Lx=2Þ
� TbÞ=ðTb � T0Þ ! 0, and the agreement in the ballistic

limit is excellent. As for the example with no internal heat

generation, errors occur between the ballistic and diffusive

limits. Finally, we note that although much simpler in form,

the Fourier’s law solution, Eqs. (18) and (19), gives results

that are essentially identical to the ballistic-diffusive solution

presented as Eq. (23) in the work by Hua and Cao.16,26

Figure 5(b), a plot of the normalized temperature rise,

dT=DT, in the center of the film as given by Eq. (20) vs. Knx

shows the differences between our Fourier’s law solutions

and the FVM BTE solutions more clearly. Differences

between the two approaches first increase as Knx increases

and then decrease as Knx continues to increase towards the

ballistic limit. The maximum error in Fourier’s law solution

occurs at Knx � 0:5 and is about 28%. Similar behavior is

FIG. 3. (a) Normalized temperature profile ðTðxÞ � TRÞ=ðTL � TRÞ vs. normalized distance, x=Lx, for cross-plane heat transport with no internal heat genera-

tion (Fig. 1(a)). Several different Knudsen numbers are shown. Lines are the result of Fourier’s law, and the symbols are FVM solutions of the phonon BTE.

(b) The left axis shows the normalized temperature jump, DTðx ¼ 0Þ=ðTL � TRÞ vs. Knx for cross-plane thermal transport with no internal heat generation

(case 1(b) in Fig. 1). Fourier’s law solution (line) is from Eq. (10a), and filled symbols are the FVM solutions to the phonon BTE. The empty symbols belong

to the right axis and show the error, jDTFL � DTFLj=ðTL � TRÞ; between both solutions.

FIG. 4. Sketch of the solution, TðxÞ, for a sample with internal heat genera-

tion and two contacts at the same temperature.
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observed with and without internal heat generation, but the

maximum error and the Knudsen number for which the max-

imum error occurs are seen to be problem specific.

C. Apparent thermal conductivities

Measuring internal temperature profiles is difficult

experimentally; often what is determined is an apparent ther-

mal conductivity. It is perhaps more relevant, therefore, to

examine the errors associated with evaluating the apparent

thermal conductivity with Fourier’s law. For case (a) in Fig.

1, a difference in the temperature between the two contacts

with no internal heat generation, the apparent thermal con-

ductivity that would be deduced was given by Eq. (15). Hua

and Cao also defined an apparent thermal conductivity for

case (b) in Fig. 1, no temperature difference between the two

contacts but with internal heat generation. In this case, the

apparent thermal conductivity that would be deduced is16

japp ¼
_SL2

x

12 hT xð Þ � T0i
� � ; (21a)

where

hT xð Þi ¼ 1

Lx

ðLx

0

T xð Þdx : (21b)

Using Eq. (18), we find

japp ¼
jbulk

1þ 4Knx
; (22)

which is the same result obtained by Hua and Cao16 with

the ballistic-diffusive approach.26 In the diffusive limit,

Knx � 1, japp ! jbulk, as expected. As the structure

becomes more ballistic, japp < jbulk, and in the ballistic limit

where Knx � 1; japp ! 0.

Figure 6 plots the apparent thermal conductivities vs.

Knudsen number for the case of no internal heat generation

and for the case with internal heat generation. Fourier’s law

solutions, Eqs. (15) and (22), are compared to FVM solutions

to the phonon BTE. Again, we see that Fourier’s law is

essentially exact in the diffusive and ballistic limits, and

there is some error between these limits. For the apparent

thermal conductivities, however, the errors are less than

those for the internal temperature profiles. The maximum

error, Djapp=jbulk, is 5.6% for the results shown in Figs. 6

and 7. A properly implemented Fourier’s law, therefore, pro-

vides a good framework for interpreting measurements of

apparent thermal conductivity.

D. Thin films

We turn next to the thin films with diffuse boundary

scattering. A proper treatment of these structures requires a

two-dimensional solution. Extension of the methods

described here to two and three dimensions is needed but

beyond the scope of this paper. Instead, we will examine

one-dimensional (1D) solutions to these problems and show

that 1D solutions can be quite accurate for the examples con-

sidered by Hua and Cao,16 who solved the 2D phonon BTE.

FIG. 5. (a) Nanofilm (cross-plane) with internal heat generation (Fig. 1(b)). The plot of ðTðxÞ � TbÞ=ðTb � T0Þ vs. x=Lx for several different values of Knx.

Lines are Fourier’s law solutions, and symbols are FVM solutions of the phonon BTE. (b) The left axis shows the normalized temperature rise, dT=DT vs. Knx

for cross-plane thermal transport with internal heat generation (case 1(c) in Fig. 1). The line is Fourier’s law solution from Eq. (20), and the filled symbols are

FVM solutions of the phonon BTE. The empty symbols belong to the right axis and show the error, jdTFL=DTFL � dTFVM=DTFVMj, between both solutions.

FIG. 6. Apparent thermal conductivities for cross plane thermal transport vs.

Knx. The case of Fig. 1(a) (temperature difference but no internal heat gener-

ation (TD)) and case of Fig. 1(b) (no contact temperature difference but with

internal heat generation (IHG)) are shown. Symbols are FVM simulations of

the phonon BTE, and the solid lines are Fourier’s law solutions, Eqs. (15)

and (22).
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Following Hua and Cao, we examine the apparent ther-

mal conductivity for the structures shown in Figs. 1(c) and

1(d) (additional comparisons to the Monte Carlo simulations

of Hua and Cao are included in the supplementary material).

Equation (15) gave the apparent thermal conductivity for the

case of a temperature difference (TD) between contacts with

no internal heat generation. In terms of the mean-free-path

for backscattering in the bulk, k, Eq. (15) can be written as

japp ¼
CVvþx k=2

1þ k=Lx
: (23)

In a thin film, the mean-free-path is shortened by boundary

scattering to

1

kTF
¼ 1

k
þ 1

bLy
; (24)

where b is an empirical parameter and Ly is the thickness of

the film. Equation (24) can be regarded as an empirical fit to

more rigorous treatments like that of Sondheimer27 and

McGaughey et al.28 (see supplementary material for more dis-

cussion of this point.) Using (24) in (23) and expressing the

result in terms of the Knudsen numbers Knx ¼ K=Lx and Kny

¼ K=Ly, we find for the case of a temperature difference (TD)

japp TDð Þ ¼ jbulk

1þ 4

3
Knx þ Kny=b
� � : (25)

Equation (22) gave the apparent thermal conductivity for the

case of no temperature difference between contacts with

internal heat generation. In terms of the mean-free-path for

backscattering in the bulk, k, Eq. (22) can be written as

Kapp ¼
CVvþx k=2

1þ 3k=Lx
: (26)

Using Eq. (24) for the mean-free-path in a thin film in

Eq. (26) and expressing the result in terms of the Knudsen

numbers Knx ¼ K=Lx and Kny ¼ K=Ly, we find for the case

of internal heat generation (IHG)

japp IHGð Þ ¼ jbulk

1þ 4

3
3Knx þ Kny=b
� � : (27)

We consider cases (c) and (d) of Fig. 1, transport in a

thin film for 0:01 < Knx < 100. Figure 7 compares Fourier’s

law and FVM BTE solutions for Kny ¼ 1 assuming diffusive

boundary scattering. (The apparent thermal conductivities

for the TD and IHG cases are given by Eqs. (25) and (27) for

Fourier’s law solution.) The TD and IHG apparent thermal

conductivities are predicted by Fourier’s law to be distinctly

different. Agreement between the FVM BTE and Fourier’s

law solutions is quite good. The value, b ¼ 2:9 in Eqs. (25)

and (27), which produces the best fit, is between the 3p=2

given by Flik29 and the 8/3 given by Majumdar.7

IV. DISCUSSION

Several aspects of the solutions presented in Section III

are discussed in this section. First, we examine the directed

temperatures, which play an important role in heat transport

at the nanoscale.12 Second, we examine the ballistic limit

and show that Fourier’s law solution has the correct ballistic

limit. Third, we discuss the discrepancies observed between

the Fourier’s law and FVM solutions in the quasi-ballistic

regime. Finally, we briefly discuss a recently reported, highly

accurate analytical treatment of the problem with no internal

heat generation.

A. Directed temperatures and fluxes

Figures 8 and 9 show the directed temperatures and heat

fluxes for the cases of Figs. 1(a) and 1(b)—cross plane heat

transport with and without internal heat generation. The

directed temperatures are obtained from Eq. (12) and the cor-

responding directed fluxes from Eq. (3). As shown in Fig.

8(a) for the case with no internal heat generation, the forward

flux is injected with the temperature of the left contact, TL,

and decays linearly across the film as phonon out-scattering

takes place. Inside the film, the temperature, TþðxÞ, should

be regarded as a measure of the amount of heat in the for-

ward flux. Similarly, the reverse flux is injected at a

FIG. 8. Directed temperatures versus position x=Lx for (a) nanofilm (cross-

plane) with temperature difference and (b) nanofilm (cross-plane) with an

internal heat source. In both cases, L ¼ k ¼ 4K=3 ¼ 61:3 nm. On the left, the

normalized temperatures are defined as Tnorm ¼ ½TðxÞ � TR�=½TL � TR�. On

the right, the normalized temperatures are defined as Tnorm ¼ ½TðxÞ � T0�=
½ _SLx=2vþx Cv�.

FIG. 7. Apparent thermal conductivities for a thin film with Kny ¼ 1 vs.

Knx (cases (c) and (d) of Fig. 1). Symbols are FVM BTE simulation results,

and the lines are Fourier’s law solutions, Eqs. (25) and (27), with b ¼ 2:9.
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temperature, TR, and increases linearly across the film. The

corresponding directed fluxes for this case are shown in Fig.

9(a) and follow directly from Eq. (1).

The case for internal heat generation is shown in Figs.

8(b) and 9(b). As shown in Fig. 8(b), TþðxÞ begins at T0 and

increases quadratically across the film as heat is generated.

Similarly, T�ðxÞ begins at T0 at x ¼ Lx and increases across

the film towards x ¼ 0. The corresponding directed fluxes

are shown in Fig. 9(b). At x ¼ 0, FþQðx ¼ 0Þ begins at

F0 ¼ vþx CVT0=2, the heat flux injected from the contact.

Similarly, at x ¼ Lx, F�Qðx ¼ LxÞ begins at F0.

B. Ballistic limit

From the flux equation, (1), the ballistic limit is obtained

by letting k!1. When converted to a temperature, the

result is

T xð Þ ¼ TL þ TR

2
þ

_SLx

2vþx Cv
: (28)

For case (a) of Fig. 1, cross-plane thermal transport with no

internal heat generation, we find TðxÞ ¼ ðTL þ TRÞ=2, which

is the correct ballistic limit.12,30 This is also the result

obtained from the Fourier’s law solution, Eqs. (16) and (17)

in the limit jbulk !1. For case (b) of Fig. 1, cross-plane

thermal transport with internal heat generation, TL ¼ TR

¼ T0, and Eq. (23) gives the same result as Fourier’s law

solution, Eq. (18) in the limit as jbulk !1. We conclude

that Fourier’s law gives the correct solution in the ballistic

and diffusive limits, but in between these limits, Figs. 3 and

5 show small differences between Fourier’s law and FVM

solutions to the BTE.

C. The quasi-ballistic regime, Knx 	 1.

Fourier’s law gives correct solutions in the diffusive

limit, and we have shown that when proper boundary condi-

tions are used, it also gives the correct solutions in the ballistic

limit, but as shown in Figs. 3 and 5, differences are observed

in the quasi-ballistic regime where Knx is on the order of

unity. Under quasi-ballistic conditions, the temperature pro-

files in Fig. 3(a) are seen to be slightly non-linear—the

temperature is a little higher than the Fourier’s law results

near the left contact and a little lower near the right contact.

This nonlinearity can also be seen in Fig. 1 of Ref. 12 and in

the exact solutions presented by Heaslet and Warming.31 How

is this explained?

A basic assumption in the flux method is that the for-

ward flux and backward flux each travel at a fixed, spatially

uniform velocity of vþx ¼ v�x ¼ vs=2. The factor of one-half

comes from averaging over angles assuming a spherically

symmetric distribution of velocities. It has, however, been

noted that diffusion is altered within about a mean-free-path

of absorbing contacts where the distribution function

becomes asymmetric.32 Berz has discussed this at the right

(collecting) contact and Shockley at the left (injecting) con-

tact.19,33 This effect can be understood as follows. The heat

flux is spatially invariant under the steady-state, no internal

source conditions of Fig. 3(a). Write the heat flux as

FQ ¼ CVTðxÞvxðxÞ, where vxðxÞ is the average, x-directed

phonon velocity at location, x. Near the right contact, the

number of negative velocity phonons decreases because

the absorbing contact prevents their injection. As a result,

the average velocity is larger than expected near the right

contact, which requires the average temperature to be

smaller than expected near the right contact to maintain the

constant heat flux.33 Near the left contact, the average veloc-

ity is smaller than expected because phonons with small

x-directed velocities (i.e., those injected tangentially) scatter

more often near the surface than do phonons with larger

x-directed velocities.19 Because the velocity is smaller than

expected, the temperature must be larger than expected to

maintain the constant heat flux. The distortion of the spheri-

cal distribution of velocities occurs within about a mean-

free-path of each boundary. For samples on the order of one

mean-free-path thick, these two regions overlap, and the

error in our Fourier’s law solution, which assumes a spheri-

cal distribution of velocities, is the largest, as observed in

Fig. 3(b). For very thin samples, there is no distortion of the

distribution due to scattering, and our solution is exact.

Similar distortions of the spherical distribution must explain

the errors in the case of internal heat generation (Fig. 5). The

boundary layer effects are resolved in full numerical6 or ana-

lytical10,31 solutions to the phonon BTE.

Finally, we note that when the contacts are at different

temperatures, the magnitude of the temperature jumps

depends on the phonon transmission (Knudsen number).

When the temperatures of the two contacts are identical, but

there is internal heat generation, temperature jumps can also

occur, but they do not depend on the phonon transmission. It

has been pointed out that in the general case, internal heat

generation and contacts at different temperatures, it is possi-

ble to eliminate the temperature jumps or to produce asym-

metric temperature jumps.34

D. Analytical solutions of Ordonez-Miranda et al.

Highly accurate analytical solutions for case (a) in Fig.

1 have recently been reported by Ordonez-Miranda et al.35

Their approach resolves the boundary layer non-linearities

mentioned above and are very close to the FVM numerical

FIG. 9. Net flux and directed fluxes versus position x=Lx for (a) nanofilm

(cross-plane) with temperature difference and (b) nanofilm (cross-plane)

with an internal heat source. In both cases, L ¼ k ¼ 4K=3 ¼ 61:3 nm. On

the left, the normalized fluxes are defined as Fnorm ¼ ½FðxÞ � F�ðx ¼ LxÞ�=
½Fþðx ¼ 0Þ � F�ðx ¼ LxÞ�. On the right, the normalized fluxes are defined

as Fnorm ¼ ½FðxÞ � F0�=½ _SLx=2�.
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solutions (the difference is less than 2%). Analytical solu-

tions such as these are very useful, but they tend to be avail-

able only for a few specific problems. For other problems,

Fourier’s law can be used with modest errors. For example,

cases (b), (c), (d), and (e) in Fig. 1 are easily handled by

Fourier’s law. An arbitrary heat generation source, _S(x), can

also be treated, and extensions to full phonon dispersion and

energy dependent scattering are possible (as discussed and

demonstrated in Ref. 12). Although Fourier’s law is not a

panacea (for example, it’s not clear how to extend it to

strongly 2D problems), it can play a useful role in analyzing

thermal transport at the nanoscale. In Fig. 5 of Ref. 35, the

authors present analytical solutions for three different geom-

etries. We discuss the corresponding Fourier’s law solutions

in the supplementary material.

V. CONCLUSIONS

The results discussed in this paper show that when used

with proper boundary conditions, the unmodified Fourier’s

law can provide a good description of steady state, one-

dimensional heat transport in nanostructures with and with-

out internal heat generation (within the context of the simple

gray model employed here). The results agree well (although

not perfectly) with numerical solutions of the phonon BTE.

They also agree very well with a more analytically compli-

cated ballistic-diffusive approach.26 The Fourier’s law

approach provides simple, analytical expressions that are

exact in the diffusive and ballistic limits. Between these two

limits, errors in Fourier’s law solution can occur. The prob-

lems discussed in this paper (and the additional ones in the

supplementary material) indicate the magnitude of the errors

that can be expected. For the apparent thermal conductivity,

which can be measured more easily than the internal temper-

ature profile, the errors are well below 10%.

The results of this paper also provide some insights into

thermal transport at the nanoscale. For example, it is interest-

ing to note that the magnitude of the temperature jump is

related to the mean-free-path when there is no heat source,

but it is independent of mean-free-path when there is an

internal heat source and the contacts are at the same tempera-

tures. We also showed how to extract the directed tempera-

tures, TþðxÞ and T�ðxÞ from TðxÞ. The results shown in Figs.

8 and 9 give insights into the meaning of temperature at the

nanoscale; they show how it can be understood in a manner

that is analogous to the way that electrochemical potentials

at the nanoscale are now understood.15

To solve a heat transport problem, a heat current equa-

tion (e.g., Fourier’s law) is inserted into a heat balance equa-

tion, and boundary conditions are specified. This paper

reinforces the conclusions of Refs. 10 and 12 that the main

issue is not the validity of Fourier’s law at the nanoscale; it

is the appropriate boundary conditions on the heat equation

at the nanoscale.

Several issues deserve further study. A formal derivation

of the flux equations from the phonon BTE would help to

clarify the assumptions involved (a simple derivation is pre-

sented in the supplementary material). Fourier’s law treat-

ment of complex phonon dispersions and energy-dependent

mean-free-paths deserves further study to extend the initial

demonstration in Ref. 12. Extensions of this method to

higher spatial dimensions should also be explored, but there

are concerns about the usefulness of the diffusion approxi-

mation with temperature jumps in two and three dimensions

(see the discussion in Chapter 7, Sec. 6 of Ref. 3).

Nevertheless, the in-plane transport examples discussed in

the paper show that there are 2D problems for which a 1D

approach is useful. We conclude that the results presented

here support earlier suggestions that Fourier’s law can play a

useful role in analyzing heat transport at the nanoscale.12–14

More generally, this paper indicates how electron and pho-

non transport at the nanoscale can be understood within a

common conceptual framework.36

SUPPLEMENTARY MATERIAL

See supplementary material for further explanations.
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