
PHYSICAL REVIEW B 97, 045202 (2018)

Four-phonon scattering reduces intrinsic thermal conductivity of graphene
and the contributions from flexural phonons
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We have developed a formalism of the exact solution to linearized phonon Boltzmann transport equation (BTE)
for thermal conductivity calculation including three- and four-phonon scattering. We find strikingly high four-
phonon scattering rates in single-layer graphene (SLG) based on the optimized Tersoff potential. The reflection
symmetry in graphene, which forbids the three-ZA (out-of-plane acoustic) scattering, allows the four-ZA processes
ZA + ZA � ZA + ZA and ZA � ZA + ZA + ZA. As a result, the large phonon population of the low-energy
ZA branch originated from the quadratic phonon dispersion leads to high four-phonon scattering rates, even much
higher than the three-phonon scattering rates at room temperature. These four-phonon processes are dominated by
the normal processes, which lead to a failure of the single mode relaxation time approximation. Therefore, we have
solved the exact phonon BTE using an iterative scheme and then calculated the length- and temperature-dependent
thermal conductivities. We find that the predicted thermal conductivity of SLG is lower than the previously pre-
dicted value from the three-phonon scattering only. The relative contribution of the ZA branch is reduced from 70%
to 30% when four-phonon scattering is included. Furthermore, we have demonstrated that the four-phonon scatter-
ing in multilayer graphene and graphite is not strong due to the ZA splitting by interlayer van der Waals interaction.
We also demonstrate that the five-phonon process in SLG is not strong due to the restriction of reflection symmetry.
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I. INTRODUCTION

Graphene has attracted intense interest for both fundamental
research and practical applications [1–4] due to its unique
structure and extraordinary properties. The two-dimensional
honeycomb structure, zero band gap, and strong sp2 bond
endow graphene with unique electronic [5,6], thermal [7–9],
optical [10], and mechanical [11] behaviors. For instance, the
high mobility and long phonon mean free path result in small
heat generation and a high thermal conductivity [8,9,12–14],
which is potentially helpful for heat dissipation in nanodevices
with shrinking package sizes [15].

Extensive theoretical studies have been carried out to
explain the high thermal conductivity and to gain insight into
the spectral phonon transport [2,3,16] in single-layer graphene
(SLG). Lindsay and co-workers optimized the classical C-C
interatomic potentials and obtained the phonon dispersions and
anharmonic properties which agree well with first-principle
calculations based on the density functional theory (DFT)
[17]. Molecular dynamics (MD) simulations based on the
optimized potentials yield a thermal conductivity of 1100–
2900 W/mK for graphene at room temperature [18–20], which
agrees well with the experimental values. Nevertheless, the
classical MD simulation results need to be used with caution
due to the ignorance of quantum effects in specific heat
and the phonon scattering since the room temperature is far
below the Debye temperature of graphene, which is about
1000–2300 K [21]. More precisely, Lindsay and co-workers
[22,23] solved the linearized BTE based on the third-order
interatomic force constants (IFCs) and obtained a size depen-
dent thermal conductivity of graphene of 1500–3500 W/mK
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for 1–10 μm. They found that although the normal (N)
scattering does not contribute directly to thermal resistance
it can significantly affect the Umklapp (U) scattering and thus
plays an important role in determining thermal conductivity.
Besides, they identified the reflection symmetry in single-layer
graphene and found that it could restrict the phase space for
parts of the scattering between the out-of-plane modes and
in-plane modes. As a result, the out-of-plane acoustic (ZA)
phonons have significantly long relaxation times and thus
dominate the thermal transport, contributing to over 70% to
the total thermal conductivity. In contrast, the normal mode
analysis (NMA) based on MD simulations only predicted 30%
contributions from the ZA branch [3,16,18,24,25].

Although BTE calculations avoid the limitation of the
classical nature in MD simulations, they are still under
debate since they only include three-phonon scattering in
the calculation of phonon relaxation times. The ignorance of
four-phonon scattering has been found to produce significant
inaccuracy in bulk materials [26,27]. It is interesting to find out
the role of four-phonon scattering in the thermal transport in the
two-dimensional material, graphene. The four-phonon scatter-
ing calculation formalism based on the single mode relaxation
time approximation (SMRTA) has already been presented
and applied to bulk materials in our previous work [26,27].
However, as indicated by Lindsay et al. [22,23], the SMRTA
improperly takes N processes as a direct thermal resistant
source and thus leads to an overestimation of scattering rates es-
pecially in the materials like graphene in which the N processes
dominate. Thus, an iterative scheme based on three-phonon
scattering has been developed to exactly solve the linearized
phonon BTE to replace the SMRTA [16,28]. To address the
importance of four-phonon scattering, it is necessary to include
four-phonon scattering into the iterative scheme. However, the
calculation of the SMRTA four-phonon scattering is already a
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large challenge [26,27], involving it into the iterative scheme
could increase the challenge to an inaccessible level. The
objective of this work is to address this challenge.

The paper is organized as follows. In Sec. II we present the
iterative method to exactly solve the linearized phonon BTE
that includes four-phonon scattering. In Sec. III we describe
the setup of our calculations and demonstrate the technical
details in the methods of enhancing the efficiency of the
calculations without losing any accuracy. In Sec. IV we give
the results and discussions including the role of the reflection
symmetry in four-phonon scattering (Sec. IV A), the ultrahigh
four-phonon scattering rates in SLG (Sec. IV B), the dominant
N processes in three- and four-phonon scattering (Sec. IV C),
the thermal conductivity reduction after introducing the four-
phonon scattering given by the iterative scheme (Sec. IV D),
the relative thermal conductivity contribution of each branch
(Sec. IV E), and further discussions on the four-phonon scat-
tering in multilayer graphene and graphite as well as the five-
phonon process in SLG (Sec. IV F). The conclusions are given
in Sec. V. In Appendix A we show the details of the derivation
of the solution to linearized phonon BTE. In Appendix B
we summarize the important Hamiltonians that determine the
phonon scattering probabilities from the literature.

II. EXACT SOLUTION TO LINEARIZED PHONON
BOLTZMANN TRANSPORT EQUATION

In the perturbation theory, the steady-state phonon BTE
describes the balance of the phonon population between the
diffusive drift and the scattering as [29–31]

vλ · ∇nλ = ∂nλ

∂t
|s , (1)

where λ labels the phonon mode (k,ν) with k representing
the wave vector and ν the dispersion branch, vλ is the group
velocity, and nλ is the phonon occupation number. In Ref. [26]
we have obtained the phonon relaxation time solution to Eq. (1)
within the framework of the SMRTA by including the three-
phonon and four-phonon scattering rates in the scattering term
on the right-hand side of Eq. (1). However, when N processes
dominate the phonon transport, which reaches a collective
regime with nonequilibrium distribution [32], the SMRTA is
not appropriate anymore. Such a phenomenon results from the
fact that the N processes contribute indirectly to the thermal
resistance by influencing the U processes. And thus, a direct
summation of the N and U scattering rates in the SMRTA is an
inaccurate description of the thermal resistance. At this stage,
an exact solution to the linearized phonon BTE [22,28,33]
beyond the SMRTA is required.

For generality, we include the three-phonon, four-phonon,
isotope, and boundary scattering processes in the scattering
term on the right-hand side of Eq. (1). With the detailed
derivation given in Appendixes A and B, the final solution
of the spectral phonon relaxation time is

τλ = τ 0
λ (1 + �3,λ + �4,λ + �iso,λ). (2)

Here τ 0
λ is the SMRTA based phonon relaxation time [26] with
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which consists of the SMRTA based individual three-phonon,
four-phonon, isotope, and boundary scattering rates
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=
∑
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Liso, (6)
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τ 0
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L
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W

1 − p

1 + p
, (7)

where n0
λ = [exp(h̄ωλ/kBT ) − 1]−1 is the phonon Bose-Einstein distribution function. In Eq. (4), the two terms on the right-hand

side represent the processes λ → λ′ + λ′′ and λ + λ′ → λ′′, respectively. In Eq. (5), the three terms on the right-hand side
represent the processes λ → λ′ + λ′′ + λ′′′, λ + λ′ → λ′′ + λ′′′, and λ + λ′ + λ′′ → λ′′′, respectively. In Eq. (6), the right-hand
side indicates the elastic scattering process λ → λ′. In Eq. (7), L and W represent the length and width of the material in the x

and the y directions, respectively, assuming that the heat transport is along x direction. 0 � p � 1 is the specularity parameter
with p = 0 indicating the extremely rough boundary and p = 1 the mirrorlike boundary. �3,λ, �4,λ, and �iso,λ are defined as
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∑
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τλ′ξλλ′Liso, (10)
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and ξλλ′ , ξλλ′′ , and ξλλ′′′ are defined as

ξλλ′ ≡ ωλ′

ωλ

vλ′ · ∇T

vλ · ∇T
= ωλ′vλ′x

ωλvλx

, (11)
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, (13)

where vλx is the phonon group velocity component in the heat
transport (x) direction. Since both the left- and the right-hand
sides contain the unknown τλ, Eq. (2) is solved iteratively
and thus is also called the iterative scheme. The scattering
probability matrices

L± = πh̄

4N
|V (3)

± |2
±
δ(ωλ ± ωλ′ − ωλ′′ )

ωλωλ′ωλ′′
, (14)
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, (15)
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n∑
b
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∣∣eλ
b · eλ′∗

b

∣∣2
δ(ωλ − ωλ′), (16)

are given by the Fermi’s golden rule based on the corresponding
Hamiltonians shown in Appendix B. N is the total number
of k points or primitive cells. The Kronecker deltas 
± =

k±k′−k′′,G and 
±± = 
k±k′±k′′−k′′′,G describe the momen-
tum selection rule (MSR) and have the property that 
m,n = 1
(if m = n), or 0 (if m �= n), where G is a reciprocal lattice
vector with G = 0 implying the N process and G �= 0 the
U process. The delta functions in Eqs. (14), (15), and (16)
describe the energy selection rules (ESRs) ωλ ± ωλ′ − ωλ′′ =
0, ωλ ± ωλ′ ± ωλ′′ − ωλ′′′ = 0, and ωλ − ωλ′ = 0, respectively.
In Eq. (16), gb = ∑

j fjb(1 − mjb/m̄b)2 measures the mass
disorder, where j indicates the isotope types, fjb is the fraction
of the isotope j in the lattice sites of the basis atom b, mjb is
the mass of the isotope j , and m̄b is the average atom mass of
the basis b sites. The transition probability matrices V

(3)
± and

V
(4)
±± are

V
(3)
± =

∑
b,l′b′,l′′b′′

∑
αα′α′′
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αbe
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(17)
V

(4)
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∑
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∑
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where b, l, and α label the indices of the basis atoms, unit cells,
and directions, respectively. 
αα′α′′

0b,l′b′,l′′b′′ and 
αα′α′′α′′′
0b,l′b′,l′′b′′,l′′′b′′′

are the third-order and fourth-order IFCs. eλ
αb is the phonon

eigenvector component. rl is the position vector of the lth unit
cell. The phonon angular frequencies ωλ and eigenvectors e
are determined by diagonalizing the dynamical matrix

Dαα′
bb′ (k) = 1√

mbmb′

∑
l′


αα′
0b,l′b′e

ik·rl′ , (19)

where 
αα′
0b,l′b′ is the second order IFC.

The thermal conductivity is given by

κx = 1

V

∑
λ

v2
x,λcλτλ, (20)

where V is the total volume of N primitive cells, cλ =
h̄ωλ∂n0

λ/∂T is phonon specific heat per mode, and the sum-
mation is done over all the 3Nnb modes with nb representing
the number of basis atoms in a primitive cell.

The formalism is applicable for one-, two-, and three-
dimensional crystals, and here we take graphene as an example
for demonstration. The calculation for three-dimensional ma-
terials are more time consuming.

The exact BTE solves all the phonons’ scatterings si-
multaneously beyond the SMRTA. All the phonons are in
their natural states, and their collective behavior is naturally
captured. In SMRTA, a phonon mode is depopulated while all
the final states are repopulated isothermally after a scattering
process. Therefore, the phonons seem independent to each
other. In contrast, in the exact BTE, each phonon’s final state
is coupled with all the other phonons’ initial states. The results
of former scattering events can affect the current scattering of
all the other phonons. This can be seen from Eqs. (8)–(13),
in which all the phonon modes are coupled with each other
and the equations has to be solved via iteration. Especially
when N process dominates (the momentum is conserved after
scattering events), there are a large portion of phonon kicking
each other to move forward continually. Such influence results
in a collective motion of phonons, or so called relaxon [34]. We
note that some interesting works have been done on the cross-
correlation terms of the phonon normal modes in Green-Kubo
method [35,36], and they can also determine the collective
phonons’ contribution. However, their method is different from
the exact solution to BTE as the latter can separate clearly the
thermal conductivity contribution of each phonon branch while
the former couples different modes’ contributions together.
Nevertheless, it is of great interest to further explore their
relations.

III. CALCULATION DETAILS

The IFCs 
αα′
0b,l′b′ , 
αα′α′′

0b,l′b′,l′′b′′ , and 
αα′α′′α′′′
0b,l′b′,l′′b′′,l′′′b′′′ are cal-

culated by using the center finite difference method based on
the optimized Tersoff potential [17], which has been shown to
describe the anharmonic and other properties as accurately as
DFT calculations for graphene [17]. In our work, the size of
the k mesh is 40 × 40. The lattice constant and thickness are
taken as 2.492 and 3.350 Å, respectively [17]. The dispersion
relation in high-symmetric directions (�-M-K) is shown in
Fig. 1, which are identical to that given by Ref. [17].

Each fourth-order IFC (4-IFC) value requires a double
amount of computations of each third-order IFC (3-IFC).
In Eqs. (17) and (18) the total required numbers of the
3-IFCs 
αα′α′′

0b,l′b′,l′′b′′ and 4-IFCs 
αα′α′′α′′′
0b,l′b′,l′′b′′,l′′′b′′′ are 27N2n3

b

and 81N3n4
b, respectively. V

(3)
± and V

(4)
±± are phonon mode

dependent and have the dimensions of 3Nnb × 3Nnb and
3Nnb × 3Nnb × 3Nnb, respectively. To sum up, the compu-
tational cost of the four-phonon scattering rate is about 9N2n2

b

of the three-phonon scattering rate. In our work N = 1600,
the required amount of memory and time in the calculation of
the four-phonon scattering rate is about 9 × 107 times of the
three-phonon scattering rate which seems impossible.
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FIG. 1. The dispersion relation of graphene given by Eq. (19)
using the optimized Tersoff potential. The green dashed line indicates
that the thermal energy level at room temperature kBT is not far above
the energy h̄ω of most phonons, and thus the classical quantities are
not comparable to quantum quantities.

Several ways have been used to reduce the computational
cost without losing accuracy. First, due to the small cutoff
radius of the Tersoff potential, the actual real-space domain
used in the calculation can be much smaller than the k-
domain, 40×40. This is reflected by the fact that the IFC
matrices contain a large number of zero elements which can
be excluded in advance to reduce the later computational
cost. In our calculations, the ratios of the numbers of nonzero
elements in the 3-IFC matrix and 4-IFC matrices are only about
10−7 and 10−11, respectively. Second, the IFC matrices are
symmetric about the indices, i.e., 


xyzx

1234 = 

xxyz

1423 , which can
further reduce the computational cost. This technique benefits
the first-principles approach more, where the calculation of the
IFCs is the most time-consuming part. Third, in the calculations
ofL± andL±± in Eqs. (14) and (15), the computational cost can
be largely reduced by excluding in advance the combinations
that do not satisfy the MSR and ESR. For graphene, the
computational cost can be further reduced by the reflection
symmetry selection rule (RSSR), which is discussed in the
following section. In addition, the computation can be reduced
by about 11/12 by calculating the phonon relaxation times for
the k points in the irreducible Brillouin zone (BZ) instead of
the whole first BZ.

Equation (2) is actually a system of 3Nnb linear equations,
which can be solved by doing iterations. During the iteration
the results can easily diverge [37]. In our work, we use the
Gauss-Scidel method to do the iteration which is found to
converge better and faster than the Jacobi method.

IV. RESULTS AND DISCUSSIONS

A. Reflection symmetry in three- and four-phonon processes

For all the orders of phonon-phonon scattering, Lindsay
et al. predicted that the RSSR in 2D materials forbids all
the phonon-phonon scattering processes that involve an odd
number of flexural (out-of-plane) modes [22]. Thus, the
three-phonon processes may involve zero or two flexural
modes, while the four-phonon processes may involve zero,
two, or four flexural modes. Lindsay et al. have examined
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FIG. 2. The percentages of the numbers of processes that are
solely forbidden by the RSSR. The main figure and the inset
show the acoustic and the optical branches, respectively. Triangles
represent three-phonon processes, and squares represent four-phonon
processes.

numerically that in graphene the three-phonon scattering rates
of the processes that involve odd numbers of flexural modes
are zeros [22]. In this work we have verified numerically that
such four-phonon scattering rates are zeros as well by the
direct computation of Eq. (5).

The RSSR is a unique property for 2D materials, and the
study of how many scattering processes are forbidden by the
RSSR is of great interest [22]. In Fig. 2 we show the percentage
of the number of the processes that are forbidden solely by
the RSSR, with MSR and ESR being already satisfied, as
a function of the reduced wave vector (�-M). We find that
most (60%–90%) of the three-phonon scattering processes of
the ZA branch are forbidden by the RSSR, which allows ZA
phonons high three-phonon relaxation times and a large con-
tribution to the thermal conductivity as described in Ref. [22].
Compared to the three-phonon scattering, fewer (about 40%)
four-phonon scattering processes of the ZA branch are for-
bidden by the RSSR, especially at low frequencies. Similar
results are also observed for the TO and LO branches, e.g.,
60%–90% of the three-phonon processes are forbidden while
only 30%–40% four-phonon processes are forbidden. A dif-
ferent trend is found in the TA and LA branches, in which
more percentage of four-phonon processes is forbidden than
the three-phonon processes at low frequencies. In addition, at
the medium-to-high frequencies, the three-phonon scattering
and four-phonon scattering are generally forbidden by 50%–
70% and 35%–50%, respectively, for all six branches. These
differences between three-phonon and four-phonon scatterings
may revise the conclusions made in the literature that was
solely based on three-phonon scattering.

B. High four-phonon scattering rates based on SMRTA

The room-temperature three- and four-phonon scattering
rates (τ 0

3,λ)−1 and (τ 0
4,λ)−1 as a function of reduced wave

vector from � to M are shown in Fig. 3(a). Astonishingly,
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FIG. 3. (a) The three-phonon and four-phonon SMRTA scattering
rates (τ 0

3,N)−1, (τ 0
3,U)−1, (τ 0

4,N)−1, and (τ 0
4,U)−1, of the six branches with

respect to the reduced wave vector (�-M) at 300 K. (b) The weights of
U processes for the three acoustic branches: (τ 0

3,U)−1/(τ 0
3,tot)

−1 (black
solid triangles), (τ 0

4,U)−1/(τ 0
4,tot)

−1 (pink solid squares).

we find that the four-phonon rates are comparable to or
even much higher than the three-phonon rates, even at room
temperature, especially for the ZA, TO, and LO branches.
For instance, the three-phonon rates of the ZA branch are
typically below 0.08 ps−1 while the four-phonon rates are about
0.42–2 ps−1, which indicates the relaxation time of ZA mode
at room temperature is about 0.5–2 ps, far below expectation.
Both N and U processes are found to follow the temperature
dependence of (τ 0

3,λ)−1 ∼ T and (τ 0
4,λ)−1 ∼ T 2, not shown

here [26,27]. Those temperature dependencies indicate that
the four-phonon processes play a more important role at higher
temperatures. At 700 K, the four-phonon rates of the ZA, TO,
and LO branches reach even above 10 ps−1, being 2–3 orders
higher than the three-phonon rates. These results break the
general rule in bulk materials that four-phonon scattering is
more important in more strongly anharmonic materials [26,27],
while graphene is a relatively strongly harmonic material. Such

TABLE I. The four-phonon scattering processes involving the ZA
mode at k∗ = (0.25,0,0), which is labeled as ZA0. Note that M point
is at k∗ = (0.5,0,0). X stands for the modes other than the ZA branch,
i.e., any combination of TA, LA, TO, LO, and ZO.

ZA0 Other 3 modes Available combinations Scattering rate

ZA0+ 3X 2 630 398 1.5 × 10−5 ps−1

ZA0+ ZA + 2X 6 013 776 7.6 × 10−4 ps−1

ZA0+ ZA + ZA + ZO 201 815 4.6 × 10−5 ps−1

ZA0+ ZA + ZA + ZA 287 777 0.487 ps−1

a phenomenon indicates a significant difference between 2D
and bulk materials. We note that the branches (ZA, TO, and LO)
that have extraordinarily high four-phonon rates are those that
are forbidden relatively fewer four-phonon than three-phonon
processes by the RSSR as shown in Fig. 2.

To look into the reason for the high four-phonon scattering
rate in a computational aspect, we find that although the
probability of each four-phonon scattering process is extremely
low, the phase space allows a great number of such processes to
happen. Specifically, for each phonon mode the three selection
rules allow about ∼102 numbers of three-phonon processes
while allowing about 106–107 four-phonon processes.

To gain physical insights into the ultrahigh four-phonon
scattering rates of the ZA mode, we have looked into the
detailed scattering processes involving it. Taking the ZA mode
at k∗ = (0.25,0,0), the middle point of �M , labeled as ZA0,
as an example, we investigate the scattering rates of all the
possible four-phonon processes as shown in Table I. The
processes are divided into four categories determined by the
number of other ZA phonons involved. For each category, the
number of available four-phonon combinations is considerably
large. Surprisingly, only the category ZA0 + ZA + ZA +
ZA has a visible scattering rate, which includes ZA0→ ZA
+ ZA + ZA, ZA0 + ZA → ZA + ZA, and ZA0 + ZA +
ZA → ZA. This finding indicates that the transport of ZA
phonons is dominated by the four-ZA processes, as shown in
Fig. 4. Since ZA phonons have much larger population than
the other modes as shown in Fig. 4(c) and the four-phonon
scattering rate is proportional to the square of the population,
the four-ZA process has a much larger scattering rate than the
other processes. In contrast, the three-phonon process cannot
involve three ZA modes due to the reflection symmetry, and the
three-phonon scattering rate is only linear to the population,
therefore the τ−1

3 of ZA phonons is low. Since most of the
four-phonon processes are N processes as discussed in the
following text, these four-ZA processes lead to an collective
phonon transport with an hydrodynamical behavior [38,39].
An earlier work based on molecular dynamics has found
evidence of the importance of the higher-order scattering in
graphene [18], which strongly supports our results.

C. Dominant N processes in four-phonon scattering

As suggested by Ref. [22], for materials such as graphene
in which the N process dominates three-phonon scattering,
an iterative method is required to exclude the N process in
calculating the phonon relaxation time. Thus, it is necessary
to examine whether the N process dominates the four-phonon
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FIG. 4. Collective four-phonon transport in graphene. (c) The
population of the ZA phonons is significantly higher than the other
phonons, especially in the low-frequency region.

scattering. In Fig. 3(a) it is clearly seen that the N process
dominates the four-phonon scattering. In Fig. 3(b) we show
the ratios of the U scattering rates to the total scattering
rates (τ 0

3,U)−1/(τ 0
3,tot)

−1 and (τ 0
4,U)−1/(τ 0

4,tot)
−1, with respect

to the reduced wave vector in the six branches at 300 K.
Both ratios increase with increasing reduced wave vector
since the scattering of large wave vectors is more likely to
reach out of the first BZ. In comparison, (τ 0

4,U)−1/(τ 0
4,tot)

−1

in graphene is much lower than (τ 0
3,U)−1/(τ 0

3,tot)
−1, giving a

distinct contrast to the bulk materials in which the U process
typically dominates the four-phonon scattering [26,27]. Specif-
ically, (τ 0

4,U)−1/(τ 0
4,tot)

−1 is nearly zero throughout a broad
wave vector range and has a modest increase near the BZ
boundary. As temperature increases, the portion of normal
process in four-phonon scattering does not decrease much,
although the one in three-phonon scattering decreases, not
shown here. Therefore, the exact solution to BTE that involves
the four-phonon processes is required at all temperatures.

Since the U processes directly contribute to the thermal
resistance, it is necessary to compare the U rates between the
four-phonon and three-phonon scatterings. As seen in Fig. 3(a),
(τ 0

4,U)−1 is much higher than (τ 0
3,U)−1 for the ZA, TO, and LO

modes, and lower for other modes. Therefore, it is expected
that the four-phonon scattering can substantially reduce the
thermal conductivities of the ZA, TO, and LO branches.

D. Thermal conductivity reduction due
to four-phonon scattering

With the SMRTA scattering rates, we exactly solve the
linearized phonon BTE using an iterative scheme. In Fig. 5 we
show the thermal conductivities κ3 and κ34 of 9 μm graphene
at room temperature as a function of the iteration step. κ3 is
calculated by including the three-phonon scattering only, and
κ34 includes both the three- and four-phonon scatterings. The
iterations typically converge after 5–10 steps when four phonon
is included, and such a fast speed results from the Gauss-Scidel
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FIG. 5. The predicted thermal conductivities of 9 μm graphene at
room temperature as a function of iteration step using the optimized
Tersoff potential. The SMRTA results are at the iteration step 0.

iteration algorithm. The convergence speed slows down when
the length of the graphene increases, due to the decreases
of the boundary scattering, not shown here. The iterations
significantly increase the predicted thermal conductivity values
for all branches. Our result of κ3,ZA agrees well with the ∼2260
W/mK given by Lindsay et al. [22]. In Fig. 5(b) the ZA branch
has the most growth among the acoustic branches with regard
to the iteration step. By comparing Figs. 5(a) and 5(b), we
find that the thermal conductivity of 9 μm graphene is reduced
significantly from ∼3383 to ∼810 W/mK after including the
four-phonon scattering. This reduction mainly comes from
the ZA branch, whose thermal conductivity is reduced from
κ3,ZA ∼ 2260 W/mK to κ34,ZA ∼ 235 W/mK.

The length-dependent thermal conductivities of graphene
at room temperature predicted by different methods are sum-
marized in Figs. 6(a) and 6(b). We only show the results
from the optimized Tersoff potential and first principles (FP)
since the other potentials do not present an accurate phonon
dispersion relation [2,22]. It is seen that our three-phonon
thermal conductivity κ3 agrees well with the results from
literature. The inclusion of four-phonon scattering reduces the
thermal conductivity substantially. Both of them converges
well with length, with the former converging starting from
∼100 μm and the latter ∼10 μm. The converged values are
about 4285 and 850 W/mK, respectively. Since the fourth-
order force constant of the classical interatomic potential has
not been validated against first principles [17], the absolute
values of the thermal conductivity after including four-phonon
scattering should be interpreted qualitatively.

To compare with experiment, we plot the temperature-
dependent thermal conductivity of SLG in Fig. 6(c). The large
uncertainty of the experimental measurement makes it hard to
validate the predictions from literatures and this work. Raman
technique [4,7,8,12–14,44,45] (open triangles) generally gives
higher thermal conductivity than the other experimental meth-
ods [8,42,43] (solid triangles). We note that a work has pointed
out that the thermal conductivity measurement of graphene
by Raman technique is not reliable [46]. If we compare the
other measurements with the theoretical prediction, the κ34

agrees better than κ3. Nevertheless, the agreement is only
within the same order especially at low temperature. The
experimental data at low temperatures are quite low, possibly
due to (1) the contact thermal resistance was assumed to
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FIG. 6. (a) Length-dependent thermal conductivity of single-
layer graphene at 300 K. (b) Length convergence of thermal con-
ductivity at 300 K. (c) Temperature-dependent lattice thermal con-
ductivity. The dashed lines represent the theoretical predictions from
the literature with three-phonon scattering only. The solid lines with
open circles represent the predictions from this work. In all the
predictions, the natural 1.1% 13C is included with the exact solution
to the linearized BTE. The triangles show the experimental measured
results. References: Lindsay et al. [22,40], Fugallo et al. [41], Xie
et al. [42], Xu et al. [8], Li et al. [43], Faugeras et al. [12], Chen et al.
[44], and Lee et al. [45].
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FIG. 7. The phonon population of SLG calculated via Bose-
Einstein and Boltzmann distributions at 300 K.

be temperature independent in the experiments and (2) the
possible defects and grain boundaries in experimental samples
affect thermal conductivities at low temperatures more than
at high temperatures since the phonon-phonon scatterings at
low temperatures are weak. To have a better comparison, both
experiment and theoretical prediction need to be improved. On
the experimental side, the single-crystal SLG sample requires
high quality with negligible defects, boundaries, or chemical
residues, and a reliable method of excluding the contact
resistance needs to be developed. On the theoretical side, the
fourth-order interatomic force constants obtained from the
optimized Tersoff potential need to be validated against first
principles based on density functional theory. These are beyond
our scope, but certainly worth investigating.

We note that the thermal conductivity of SLG calculated
by Gill-Comeau and Lewis [35,36] and Fan et al. [47,48]
recently by the optimized Tersoff potential using MD sim-
ulations is about 2000–3000 W/mK, which is much higher
than the present BTE results with four-phonon scattering
included. We attribute the difference to the usage of different
phonon distribution functions. As shown in Fig. 7, the phonon
populations differ significantly between the two distributions.
We note that some quantum corrections [18,25,35,36] have
been made to correct the difference in specific heat, however,
the impact on phonon scattering was not included. As the
scattering rates depend strongly on phonon population, we
expect the two distributions give significantly different phonon
scattering rates. To probe such an effect, some work [49] has
used the Boltzmann distribution in the three-phonon scattering
formalism to calculate the phonon scattering rates. However,
as a previous work [26] has proved, the three-phonon (and
four-phonon) scattering formalism is only valid for the Bose-
Einstein distribution as its derivation depends on the Bose-
Einstein distribution (see Appendix A). It is unreasonable to
use Boltzmann distribution in a formula that is derived only
for Bose-Einstein distribution, especially at low temperatures.
Also, it is unreasonable to conclude from Fig. 7 that the
Boltzmann distribution gives more scattering due to the larger
phonon population since the scattering formalism itself is not
valid.
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TABLE II. The comparison among the different methods on the predicted relative contribution from individual branch to κ of SLG at room
temperature. The results from equilibrium MD (EMD) and nonequilibrium MD (NEMD) from Refs. [25,48] are included.

3-phonon only 3, 4-phonon EMD NEMD

κ% SMRTA Exact BTE SMRTA Exact BTE NMA [25] Green-Kubo [48] Decomposition [48]

ZA% 52% 60% 17% 31% 30%
71% 52%

ZO% 8% 4% 11% 8% 7%
TA% 22% 20% 41% 32% 27%

29% 48%
LA% 17% 16% 31% 28% 35%

E. Thermal conductivity contribution from each branch

The relative κ contributions from different branches pre-
dicted by the three- and four-phonon scatterings are compared
in Table II. It has long been in debate which branch dominates
the thermal transport, with the detailed discussion found in
the review [2]. The relative contribution of the ZA branch
is reduced from 60% to 30% after including four-phonon
scattering. The contribution of TA and LA branches increase
to around 30%. These results are compared to those from
MD simulations. We note that different MD simulations give
substantially different interpretations for the branch contribu-
tions. Nevertheless, as being stated above, MD simulations
assume the Boltzmann distribution which may significantly
vary the phonon scattering mechanisms, and thus the compar-
ison between BTE and MD should not be taken seriously at
temperatures below the Debye temperature.

F. More discussions

Since we have found the ultrahigh four-phonon scatter-
ing rates in SLG, two natural questions are: (1) Does the
four-phonon scattering play an important role in multilayer
graphene and graphite? (2) Is the five-phonon scattering impor-
tant in SLG? To address the first question, we plot the phonon
dispersion in the inset of Fig. 8. Due to the interlayer van der
Waals interaction, the ZA mode of graphene is spitted into the
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FIG. 8. The phonon population in bilayer graphene (BLG) and
graphite. Inset shows the ZA splitting in bilayer graphene (similarly
in graphite). Phonon dispersion is calculated from the intralayer
optimized Tersoff potential together with the interlayer Lennard-Jones
potential with parameters same as Ref. [50].

ZA and ZO′ modes, with the latter representing a breathing
mode between adjacent layers. We find that even such a small
spitting can result in a large reduction of the phonon population
as shown in Fig. 8. Due to the splitting, the phase space of
the four-ZA process becomes 1/16 of the SLG, and thus the
four-phonon scattering becomes unimportant. This explains
the fact that the three-phonon thermal conductivity prediction
of graphite agrees well with experiment [41,50]. Regarding the
second question, we need to refer to the reflection symmetry.
Restricted by the ASSR, the five-phonon process can at most
involve four ZA modes, same as four-phonon scattering.
Without increasing the population, the higher order makes the
five-phonon scattering negligible.

V. CONCLUSIONS

We have shown that the four-phonon scattering formalism
can be incorporated into the exact solution to BTE. We
take graphene as an example to demonstrate our method
and have obtained well-converged results. We find that the
four-phonon scattering rate in graphene is surprisingly high
due to the fact that the reflection symmetry allows significantly
more four-phonon processes than three-phonon processes. In
particular, the allowed four-ZA processes together with the
quadratic phonon dispersion push the four-phonon rates of the
ZA branch to an unprecedented level. Since these scatterings
are dominated by the normal processes, the exact solution
to BTE is required beyond the single mode relaxation time
approximation. We find that the thermal conductivity of SLG
is significantly reduced when the four-phonon scattering is
included. We expect such high four-phonon scattering rates
also exist in single layer BN and other possible planar 2D
materials, which have similar phonon dispersion and reflection
symmetry with SLG. To have a rational comparison with
experiment, more accurate experimental measurements and
accurate DFT force constants are required. Our work advances
the thermal transport calculation by incorporating four-phonon
scattering into the exact solution to BTE. Our finding is
striking in the thermal transport in 2D materials with reflection
symmetry, and provides a critical revisit to the exact thermal
conductivity value of single-layer graphene.
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APPENDIX A: DERIVATION OF THE SOLUTION TO LINEARIZED PHONON BTE

Starting from Eq. (1), due to a small temperature gradient, nλ has a small derivation n′
λ from its equilibrium Bose-Einstein

distribution n0
λ = [exp(h̄ωλ/kBT ) − 1]−1 so that nλ = n0

λ + n′
λ. By assuming that n′

λ is independent of temperature [30]:
(∂nλ/∂T ) 	 (∂n0

λ/∂T ), we have

vλ · ∇T
∂n0

λ

∂T
= ∂n′

λ

∂t
|s , (A1)

with the help of ∇nλ = (∂nλ/∂T )∇T . The scattering term ∂n′
λ

∂t
|s is the decay rate of the perturbation n′

λ due to the scattering
processes, such as phonon-phonon, phonon-impurity, and phonon-boundary scattering.

Based on the perturbation theory, the right-hand side of Eq. (A1) is rewritten as, considering the three-phonon [16,29–31,51],
four-phonon [26], isotope [52], and boundary [53–55] scattering,

∂n′
λ

∂t
|s = −

∑
λ′λ′′

{
1

2
[nλ(1 + nλ′)(1 + nλ′′ ) − (1 + nλ)nλ′nλ′′ ]L− + [nλnλ′(1 + nλ′′ ) − (1 + nλ)(1 + nλ′)nλ′′ ]L+

}

−
∑

λ′λ′′λ′′′

{
1

6
[nλ(1 + nλ′)(1 + nλ′′ )(1 + nλ′′′ ) − (1 + nλ)nλ′nλ′′nλ′′′ ]L−−

+ 1

2
[nλnλ′ (1 + nλ′′ )(1 + nλ′′′ ) − (1 + nλ)(1 + nλ′)nλ′′nλ′′′ ]L+−

+ 1

2
[nλnλ′nλ′′(1 + nλ′′′ ) − (1 + nλ)(1 + nλ′ )(1 + nλ′′ )nλ′′′]L++

}
−

∑
λ′

(nλ − nλ′)Liso − (
nλ − n0

λ

) 1

τ 0
b,λ

. (A2)

The first summation on the right-hand side represents the three-phonon scattering rate of the mode λ, with the first term accounting
for the splitting process λ → λ′ + λ′′ and the second the combination process λ + λ′ → λ′′. The physical meaning of the first
term is the difference between the transition probabilities of λ → λ′ + λ′′ and λ ← λ′ + λ′′, and thus indicates the net decay rate
of nλ due to the splitting process. Similarly, the second term illustrates the transition probability difference between λ + λ′ → λ′′
and λ + λ′ ← λ′′, indicating the net decay rate of nλ due to the combination process. L± contains the information of the intrinsic
transition probability and the transition selection rules for energy and momentum ωλ ± ωλ′ − ωλ′′ = 0 and k ± k′ − k′′ = G,
where G is a reciprocal lattice vector with G = 0 implying the N process and G �= 0 the U process. The second summation
accounts for the four-phonon scattering of the mode λ, with the first parentheses representing the process λ → λ′ + λ′′ + λ′′′, the
second the process λ + λ′ → λ′′ + λ′′′, and the third λ + λ′ + λ′′ → λ′′′. Similarly, L±± accounts for the transition probabilities
and the selection rules, i.e., ωλ ± ωλ′ ± ωλ′′ − ωλ′′′ = 0 and k ± k′ ± k′′ − k′′′ = G, for those processes. The third summation is
the phonon-isotope scattering rate for λ → λ′ given by Tamura [52], with the selection rules ωλ = ωλ′ and k �= k′. The last term
on the right-hand side of Eq. (A2) indicates the phonon-boundary scattering rate. The minus sign before each scattering term
indicates that the perturbation n′

λ is decreasing with time, i.e., the phonon distribution tends to recover its equilibrium state, due
to the scattering. In contrast to the SMRTA [16,30], which assumes that only the mode λ has a perturbation, here we assume a
perturbation in all the phonon modes to exactly solve the phonon BTE [28,29,33], that is

nλ = n0
λ + n′

λ,n
′
λ = −�λ

∂n0
λ

∂(h̄ωλ)
= �λ

1

kBT
n0

λ

(
n0

λ + 1
)
, (A3)

nλ′ = n0
λ′ + n′

λ′ ,n
′
λ′ = −�λ′

∂n0
λ′

∂(h̄ωλ′)
= �λ′

1

kBT
n0

λ′
(
n0

λ′ + 1
)
, (A4)

nλ′′ = n0
λ′′ + n′

λ′′ ,n
′
λ′′ = −�λ′′

∂n0
λ′′

∂(h̄ωλ′′ )
= �λ′′

1

kBT
n0

λ′′
(
n0

λ′′ + 1
)
, (A5)

nλ′′′ = n0
λ′′′ + n′

λ′′′ ,n
′
λ′′′ = −�λ′′′

∂n0
λ′′′

∂(h̄ωλ′′′ )
= �λ′′′

1

kBT
n0

λ′′′
(
n0

λ′′′ + 1
)
, (A6)

where � measures the derivation in the phonon distribution from equilibrium, weighted with a factor that depends on the
equilibrium distribution of that mode [29]. In the final step of each of the Eqs. (A3)–(A6), we used the fact that ∂n0/∂(h̄ω) =
−n0(n0 + 1)/kBT . By substituting Eqs. (A3)–(A6) into Eq. (A2) and dropping the higher order terms O(�2) and O(�3), the
scattering term of the linearized phonon BTE is written as

∂n′
λ

∂t

∣∣∣∣
s

= −
∑
λ′λ′′

1

kBT

{
(�λ + �λ′ − �λ′′)n0

λn
0
λ′
(
1 + n0

λ′′
)
L+ + 1

2
(�λ − �λ′ − �λ′′)n0

λ

(
1 + n0

λ′
)(

1 + n0
λ′′

)
L−

}

−
∑

λ′λ′′λ′′′

1

kBT

{
1

6
(�λ − �λ′ − �λ′′ − �λ′′′ )

(
1 + n0

λ

)
n0

λ′n
0
λ′′n

0
λ′′′L−−

045202-9



TIANLI FENG AND XIULIN RUAN PHYSICAL REVIEW B 97, 045202 (2018)

+ 1

2
(�λ + �λ′ − �λ′′ − �λ′′′)

(
1 + n0

λ

)(
1 + n0

λ′
)
n0

λ′′n
0
λ′′′L+−

+ 1

2
(�λ + �λ′ + �λ′′ − �λ′′′)

(
1 + n0

λ

)(
1 + n0

λ′
)(

1 + n0
λ′′

)
n0

λ′′′L++

}

−
∑
λ′

1

kBT
(�λ − �λ′)n0

λ

(
1 + n0

λ

)
Liso − 1

kBT
�λn

0
λ

(
1 + n0

λ

) 1

τ 0
b,λ

. (A7)

Here we have used the following relations:

λ → λ′ + λ′′ :
(
1 + n0

λ′
)(

1 + n0
λ′′

) − n0
λ′n

0
λ′′ = n0

λ′n
0
λ′′

n0
λ

= 1 + n0
λ′ + n0

λ′′ , (A8)

λ + λ′ → λ′′ : n0
λ′
(
1 + n0

λ′′
) − (

1 + n0
λ′
)
n0

λ′′ =
(
1 + n0

λ′
)
n0

λ′′

n0
λ

= n0
λ′ − n0

λ′′ , (A9)

λ → λ′ + λ′′ + λ′′′ :
(
1 + n0

λ′
)(

1 + n0
λ′′

)(
1 + n0

λ′′′
) − n0

λ′n
0
λ′′n

0
λ′′′ = n0

λ′n
0
λ′′n

0
λ′′′

n0
λ

, (A10)

λ + λ′ → λ′′ + λ′′′ : n0
λ′
(
1 + n0

λ′′
)(

1 + n0
λ′′′

) − (
1 + n0

λ′
)
n0

λ′′n
0
λ′′′ =

(
1 + n0

λ′
)
n0

λ′′n
0
λ′′′

n0
λ

, (A11)

λ + λ′ + λ′′ → λ′′′ : n0
λ′n

0
λ′′

(
1 + n0

λ′′′
) − (

1 + n0
λ′
)(

1 + n0
λ′′

)
n0

λ′′′ =
(
1 + n0

λ′
)(

1 + n0
λ′′

)
n0

λ′′′

n0
λ

. (A12)

Equations (A8)–(A12) are obtained in a similar way. For example, Eq. (A8) is derived by substituting the ω of the Bose-Einstein
distribution eh̄ω/kBT = 1 + 1/n0

λ into the energy conservation law (selection rule) ω = ω′ + ω′′, giving the result 1 + 1/n0
λ =

(1 + 1/n0
λ′ )(1 + 1/n0

λ′′ ). Note that these derivations require the Bose-Einstein distribution, and it explains why the formalism is
not applicable for the Boltzmann distribution as discussed in Sec. IV D in the main text.

The final expression of the right-hand side of the original phonon BTE Eq. (A1) is obtained by defining the form [33] of
� = −hωτv · ∇T/T and putting it into Eq. (A7) for all the modes λ, λ′, λ′′, and λ′′′, while the left-hand side of Eq. (A1) is
transformed by the fact of

∂n0
λ

∂T
= 1

T

h̄ωλ

kBT
n0

λ

(
n0

λ + 1
)
. (A13)

Thus, the phonon BTE Eq. (A1) is transformed as

1 =
∑
λ′λ′′

{
(τλ + τλ′ξλλ′ − τλ′′ξλλ′′)

n0
λ′
(
1 + n0

λ′′
)

1 + n0
λ

L+ + 1

2
(τλ − τλ′ξλλ′ − τλ′′ξλλ′′)

n0
λ′
(
1 + n0

λ′′
)

1 + n0
λ

L−

}

+
∑

λ′λ′′λ′′′

{
1

6
(τλ − τλ′ξλλ′ − τλ′′ξλλ′′ − τλ′′′ξλλ′′′)

n0
λ′n

0
λ′′n

0
λ′′′

n0
λ

L−− + 1

2
(τλ + τλ′ξλλ′ − τλ′′ξλλ′′ − τλ′′′ξλλ′′′)

(
1 + n0

λ′
)
n0

λ′′n
0
λ′′′

n0
λ

L+−

+ 1

2
(τλ + τλ′ξλλ′ + τλ′′ξλλ′′ − τλ′′′ξλλ′′′)

(
1 + n0

λ′
)(

1 + n0
λ′′

)
n0

λ′′′

n0
λ

L++

}
+

∑
λ′

(τλ − τλ′ξλλ′)Liso + τλ

τ 0
b,λ

, (A14)

and further as

1 = τλ

τ 0
3,λ

− �3,λ + τλ

τ 0
4,λ

− �4,λ + τλ

τ 0
iso,λ

− �iso,λ + τλ

τ 0
b,λ

. (A15)

Then, the solution of τλ is obtained as shown in Eq. (2), with the subequations (3)–(18). Substituting τλ into Eq. (A3), the solution
of the linearized phonon BTE is expressed as

nλ = n0
λ − h̄ωλ

kBT
n0

λ

(
n0

λ + 1
)vλ · ∇T

T
τλ. (A16)

APPENDIX B: HAMILTONIANS FOR THREE-PHONON, FOUR-PHONON, AND ISOTOPE SCATTERING

The start point of the derivation of the transition probabilities is the Hamiltonian of the solids [51,52]

Ĥ = Ĥ0 + Ĥa + Ĥiso + · · · = Ĥ0 + Ĥ3 + Ĥ4 + · · · + Ĥiso + · · · , (B1)

where

Ĥ0 =
∑

λ

h̄ωλ(a†
λaλ + 1/2), (B2)
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Ĥ3 =
∑
λλ′λ′′

H
(3)
λλ′λ′′(a

†
−λ + aλ)(a†

−λ′ + aλ′)(a†
−λ′′ + aλ′′ ), (B3)

Ĥ4 =
∑

λλ′λ′′λ′′′
H

(4)
λλ′λ′′λ′′′(a

†
−λ + aλ)(a†

−λ′ + aλ′)(a†
−λ′′ + aλ′′ )(a†

−λ′′′ + aλ′′′ ), (B4)

Ĥiso =
∑
λλ′

H
(iso)
λλ′ (a†

−λ + aλ)(a†
−λ′ + aλ′), (B5)

H
(3)
λλ′λ′′ = h̄3/2

23/2 × 6N1/2

k+k′+k′′,G

V
(3)
λλ′λ′′√

ωλωλ′ωλ′′
, (B6)

H
(4)
λλ′λ′′λ′′′ = h̄2

22 × 24Nc


k+k′+k′′+k′′′,G
V

(4)
λλ′λ′′λ′′′√

ωλωλ′ωλ′′ωλ′′′
, (B7)

H
(iso)
λλ′ = − 1

4N

∑
l,b

∑
kI


ml,b

√
ωλωλ′
k+k′+kI ,Geλ

b · eλ′
b e−ikI ·rl , (B8)

V
(3)
λλ′λ′′ =

∑
b,l′b′,l′′b′′

∑
αα′α′′


αα′α′′
0b,l′b′,l′′b′′

eλ
αbe

λ′
α′b′e

λ′′
α′′b′′√

m̄bm̄b′m̄b′′
eik′ ·rl′ eik′′ ·rl′′ , (B9)

V
(4)
λλ′λ′′λ′′′ =

∑
b,l′b′,l′′b′′,l′′′b′′′

∑
αα′α′′α′′′


αα′α′′α′′′
0b,l′b′,l′′b′′,l′′′b′′′

eλ
αbe

λ′
α′b′e

λ′′
α′′b′′e

λ′′′
α′′′b′′′√

m̄bm̄b′m̄b′′m̄b′′′
eik′ ·rl′ eik′′ ·rl′′ eik′′′ ·rl′′′ . (B10)
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