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It is well known that phonon frequencies can shift from their harmonic values when elevated to a

finite temperature due to the anharmonicity of interatomic potential. Here, we show that phonon

eigenvectors also have shifts, but only for compound materials in which each atom has at least two

types of anharmonic interactions with other atoms. Using PbTe as the model material, we show that

the shifts in some phonon modes may reach as much as 50% at 800 K. Phonon eigenvectors are used

in normal mode analysis (NMA) to predict phonon relaxation times and thermal conductivity. We

show, from both analytical derivations and numerical simulations, that the eigenvectors are

unnecessary in frequency-domain NMA, which gives a critical revision of previous knowledge. This

simplification makes the calculation in frequency-domain NMA more convenient since no separate

lattice dynamics calculations are needed. On the other hand, we expect our finding of anharmonic

eigenvectors may make difference in time-domain NMA and other areas, like wave-packet analysis.
VC 2015 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4921108]

I. INTRODUCTION

Recently, great effort has been made on the prediction

of the thermal conductivity j in general materials as the

study of thermal transport has extensive applications in the

areas of thermal management and thermoelectrics.1,2 High-j
materials can help dissipate heat rapidly in packed electronic

devices, while low j is desired for high figure of merit ZT in

thermoelectrics. To successfully manage thermal transport in

thermal and thermoelectric materials, a deep understanding

of the spectral phonon properties is critically important.

Many numerical methods have been developed to pre-

dict thermal conductivity.2 The Green-Kubo (GK) method3

based on molecular dynamics (MD) simulations has been

widely applied to estimate thermal conductivity, but it gives

limited insight of phonon properties. The anharmonic lattice

dynamics (ALD), presented by Maradudin and the co-work-

ers,4,5 and its iterative scheme, first proposed by Omini and

Sparavigna,6,7 give the spectral phonon relaxation time,

mean free path, and j. However, they ignore higher order

phonon scattering and thus only works well for low tempera-

ture. Phonon normal mode analysis (NMA) can include the

full anharmonicity of interatomic potential in MD simula-

tions, while it is based on classical thermodynamics so only

appropriate for high temperature. The time-domain NMA

was proposed by Ladd et al.8 and extended by McGaughey

and Kaviany.9 The frequency-domain NMA, so called spec-

tral energy density (SED) analysis, was early implemented

by Wang et al.,10 and then extended by Shiomi and

Maruyama,11 De Koker,12 and Thomas et al.13,14

Although NMA has been widely used for predicting

phonon relaxation time and thermal conductivity,8,9,11–21

there are still opening issues to be resolved, and here, we

target two of them. First, although it is well known that at fi-

nite temperature, the anharmonicity of interatomic potential

can lead to phonon frequencies shift from the harmonic val-

ues at 0 K, its impact on the phonon eigenvectors has not

been examined yet. Second, two versions of frequency-

domain NMA, with and without eigenvectors, have been

widely used, but there is still a debate whether they are

equivalent.21 In this letter, we first illustrate the harmonic

eigenvector (HEVs) and anharmonic eigenvector (AEVs) for

one-dimensional (1D) atomic chain and then extended to

three-dimensional (3D) bulk materials. After that, we com-

pare the two versions of frequency-domain NMA analyti-

cally and numerically.

II. EXISTENCE OF ANHARMONIC EIGENVECTORS

In Fig. 1, we show a diatomic chain with the two atomic

masses m1 and m2 and two force constants C1 and C2. The

lattice constant is a. From lattice dynamics, the diatomic

chain has two phonon branches, acoustic and optical, with

the eigen-frequencies x6

x2
6 ¼ ð2m1m2Þ�1½ðm1 þm2ÞðC1 þC2Þ

6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðm1 þm2Þ2ðC1 þC2Þ2 � 8C1C2ð1� cos kaÞm1m2

q
�

(1)

and the two orthonormal eigenvectors eþ¼ (e1, e2) and

e� ¼ ð�e�2; e
�
1Þ, where k indicates the amplitude of the wave

vector k, the subscript “�” denotes the acoustic branch and

“þ” denotes the optical branch. Considering that the eigen-

vectors can be multiplied by any arbitrary phase expði/Þ,
which does not matter the physical meaning of the eigenvec-

tors, thus we only care about the amplitude of the two com-

ponents, je1j and je2j, which can be viewed as the weights of

the phonon normal mode projections on the two basis atomsa)Electronic mail: ruan@purdue.edu
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m1 and m2, respectively. Since je1j2 þ je2j2 is normalized as

unit, the only quantity that matters is the ratio between them

je2j
je1j
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þgð Þ2 1þnð Þ2�8gn 1� coskað Þ

q
þ 1�gð Þ 1þnð Þ

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þnð Þ2�2n 1� coskað Þ

q ;

(2)

which is a function that depends on the mass ratio g¼m1/m2

and the spring constant ratio n¼C1/C2.

A. Anharmonic frequencies

In anharmonic systems at finite temperatures, instead of

staying at their equilibrium positions, the atoms vibrate

around them, and thus, the force constants do not remain at

their harmonic values and typically shift down. As a result,

the phonon frequencies suffer an anharmonic effect and

become lower than their harmonic values at 0 K as the tem-

perature rises. Mathematically, it is seen that the frequencies

x6 decrease with decreasing force constants C1 and C2 in

Eq. (1).

B. Anharmonic eigenvectors

In contrast with frequencies, eigenvectors typically have

no anharmonic effect since commonly in a diatomic chain

the two force constants are equal to each other, C1¼C2¼C,

and thus, je1j=je2j has no dependence on C based on Eq. (2).

More generally, je1j=je2j does not depend on the force con-

stants if C1/C2¼Const. or m1/m2¼ 1. In other words, for 1D

diatomic chain, the eigenvectors will show anharmonic

effect at finite temperature only in the conditions that (I) the

system contains at least two types of atoms and that (II) each

atom has different anharmonic interactions with other atoms.

To investigate if the conclusion is applicable for 3D sys-

tems, we conduct lattice dynamics (LD) calculations and

MD simulations for several bulk materials, which are divided

into three categories. For simplicity, we discuss the eigen-

vectors of the longitudinal modes first. The first category is

the elementary substance (e.g., argon, diamond, silicon, and

germanium), which does not satisfy condition I. The second

category is the compound material with each atom affected

by only one type of interatomic force (e.g., b—SiC), as

shown in Fig. 2(a), which does not satisfy condition II. And

the last category satisfies both, like PbTe in Fig. 2(b). We

first calculate the phonon eigenvectors from harmonic lattice

dynamics at 0 K using GULP.22 Then, we implement MD

simulation (by LAMMPS23) at finite temperature and calcu-

late eigenvectors using the Green’s function method pro-

posed by Kong.24 The domain sizes for all the bulk systems

are 8� 8� 8 unit cells (typically 2048 atoms for Ar and

4096 atoms for C, Si, Ge, SiC, and PbTe). Since periodic

boundary conditions are applied to the simulation domain,

we can resolve 9 k points in the [1, 0, 0] direction with

reduced wave vector of k*¼ (j/8, 0, 0), where j is an integer

from 0 to 8. In the Green’s Function calculation at Gamma

point, we have used 20 iteration steps to enforce the acoustic

sum rule and have obtained the phonon frequencies and

eigenvectors that match well with LD calculations.

For the first category, the LD calculation and MD simu-

lations show that the eigenvectors of these materials are con-

stants, e.g., the eigenvector of argon bulk (systems with one

basis atom in a primitive cell) is e¼ (e, 0, 0) with jej ¼ 1;

the eigenvector of diamond, silicon, and germanium bulks

(systems with two basis atoms in a primitive cell) is e¼ (e1,

0, 0; e2, 0, 0) with je1j ¼ je2j ¼ 1=
ffiffiffi
2
p

. As for b—SiC in the

second category, as suggested by Porter et al.,25,26 each Si/C

atom only has interaction with the four nearest C/Si neigh-

bors by setting cutoff distance for both Si-Si and C-C inter-

actions as 2.56 Å in the Tersoff potential.27,28 Thus, each

atom is affected by only one type of anharmonic force. The

results show that HEVs and AEVs are exactly the same, no

matter how high temperature is used in MD simulations.

As for bulk PbTe in category 3, each Pb/Te atom has

interactions with Pb/Te and Te/Pb atoms that are farther than

the nearest neighbors as shown in Fig. 2(b), and these inter-

actions have different anharmonicities.15 Each basis atom

experiences two or multiple types of interactions just like C1

and C2 in the 1D chain case. Expressing the eigenvectors of

LA mode as ðePb; 0; 0; eTe; 0; 0Þ, the ratio between jeTej and

jePbj is plotted in Fig. 3 at different temperatures. It is seen

that the eigenvectors at 20 K are very close to the harmonic

values at 0 K. As the temperature increases, the eigenvectors

shift away from HEVs with a considerable difference that is

as much as 50% at medium-frequency range. At high tem-

peratures, the equilibrium distances between atoms deviate

from their low temperature values due to thermal expansion.

As a result, the second order derivatives of the interatomic

potential, i.e., force constants at those changed distances are

different from their original values. These in turn lead to the

change in phonon eigenvectors for materials of category 3 in

this paper. We note that the mid-to-high frequencies have

more deviations than low frequencies in Fig. 3. A rough

FIG. 1. The sketch of a diatomic chain.

FIG. 2. The sketches to illustrate the interatomic interactions in (a) SiC and

(b) PbTe. In SiC, each Si(C) atom has only one type of interaction with the

surrounding atoms. In PbTe, each Pb(Te) atom has more than one interac-

tions with the surrounding atoms due to the long range potential.
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explanation is given in Eq. (2) that the value of je1j=je2j for

high k is more sensitive than for small k to the change of n,

since it seen that je1j=je2j is even independent on n when k
approaches zero. Physically, low-frequency phonons with

wavelength much longer than the bond length will “view”

the material as a continuum and will not sense the difference

between C1 and C2 on an atom from its neighbors. For better

accuracy, the simulations have been conducted three times

for each temperature, and only less than 1% difference

between each time is found, which indicates that the differ-

ences between HEVs and AEVs are stable and not caused by

noises. We note that not only PbTe but also other thermo-

electric materials such as PbSe and Bi2Te3 have AEVs at fi-

nite temperature since they all satisfy the two conditions

listed above. Although all the analysis above is done for lon-

gitudinal mode, the conclusion also works for transverse

modes by similar analysis. By directly calculating and com-

paring the HEVs and AEVs for transverse modes in the

materials, we confirmed this point.

III. NECESSITY OF EIGENVECTORS IN NORMAL
MODE ANALYSIS

Eigenvectors are required in normal mode analysis for

predicting spectral phonon relaxation time and mean free

path.2 In solids, the vibrations of atoms in real space are rep-

resented by the time dependent normal mode coordinates29

qk;� tð Þ ¼
X3

a

Xn

b

XNc

l

ffiffiffiffiffiffi
mb

Nc

r
ul;b

a tð Þeb�
a k; �ð Þexp ik � rl

0

� �

¼
X3

a

Xn

b

e�ba k; �ð Þ
XNc

l

ffiffiffiffiffiffi
mb

Nc

r
ul;b

a tð Þexp ik � rl
0

� �

¼
X3

a

Xn

b

e�ba k; �ð Þqb
a k; tð Þ; (3)

where

qb
a k; tð Þ ¼

XNc

l

ffiffiffiffiffiffi
mb

Nc

r
ul;b

a tð Þexp ik � rl
0

� �
: (4)

Here, ul;b
a is the ath component of the displacement of the bth

basis atom in the lth unit cell, e* is the complex conjugate of

eigenvector component, rl
0 is the equilibrium position of the

lth unit cell, � denotes phonon branch, and n and Nc are the

numbers of total basis atoms and total unit cells, respectively.

At small perturbation, the normal mode has a frequency shift

Dk;� and linewidth Ck;� with the perturbed form8

qk;�ðtÞ ¼ qk;�;0 exp ½iðxA
k;� þ iCk;�Þt�; (5)

where qk;�;0 is the vibration amplitude, a constant for a given

mode (k, �); xA
k;� is the anharmonic frequency with xA

k;�

¼ xk;� þ Dk;� .

In the time-domain NMA method,8,9 the spectral phonon

relaxation time sk;� is obtained by fitting the autocorrelation

function

hEk;� tð ÞEk;� 0ð Þi
hEk;� 0ð ÞEk;� 0ð Þi ¼

ð1
0

Ek;� t0 þ tð ÞEk;� t0ð Þdnð1
0

Ek;� t0ð ÞEk;� t0ð Þdt0
¼ e�t=sk;� (6)

as an exponential decay form. Here,

Ek;� tð Þ ¼
x2

k;� jqk;� tð Þj2

2
þ
j _qk;� tð Þj2

2
(7)

is the total energy of the mode (k, �). Besides the trajectory

of each atom, the method requires the eigenvectors to evalu-

ate normal mode amplitude in Eq. (3).

The frequency-domain NMA methods have two differ-

ent formalisms. The first one is to calculate the total spectral

energy density (SED) (U(k, x)) for a given k by summing

up the SED’s of all the phonon branches (U�(k, x))

Uðk;xÞ ¼
X3n

�

U�ðk;xÞ ¼
X3n

�

j _qk;�ðxÞj2

¼
X3n

�

����X3

a

Xn

b

e�ba ðk; �Þ _qb
aðk;xÞ

����
2

; (8)

where

U� k;xð Þ ¼ j _qk;� xð Þj2 ¼
����
ðþ1

0

_qk;� tð Þe�ixtdt

����
2

¼ Ck;�

x� xA
k;�

� �2

þ C2
k;�

: (9)

U�ðk;xÞ is the Fourier transform of the time derivative of

qk;�ðtÞ; Ck;� ¼ ðxA 2
k;� þ C2

k;�Þq2
k;�;0 is a constant related to

(k, �). By fitting Eq. (8) as 3n Lorentzian functions, the peak

positions xA
k;� and full widths at half maximum 2Ck;� as

well as phonon relaxation time sk;� ¼ 1=2Ck;� are obtained.

Contrast to the first version, the second one is to calculate

the total SED without evaluating the SED of each

branch11–13

FIG. 3. The ratio jeTej=jePbj as a function of reduced wave vector in the [1,

0, 0] direction for the LA mode of bulk PbTe at different temperatures,

where jeTej and jePbj are the moduli of the components of the eigenvector

ðePb; 0; 0; eTe; 0; 0Þ.
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U0 k;xð Þ ¼ 1

4ps0

X3;n
a;b

mb

Nc

����XN

l

ðs0

0

_ul;b
a tð Þexp ik � rl

0 � ixt
� �

dt

����
2

¼
X3

a

Xn

b

j _qb
a k;xð Þj2: (10)

In this approach, the eigenvectors are not required.

It has been under debate whether the second version

gives the same results with the first version.21 To find out the

relation between U (Eq. (8)) and U0 (Eq. (10)), we write

_qk;�ðxÞ in vector product format for convenience

j _qk;�ðxÞj2 ¼ je†ðk; �Þ _Qðk;xÞj2

¼ ðe†ðk; �Þ _Qðk;xÞÞ†ðe†ðk; �Þ _Qðk;xÞÞ

¼ _Q
†ðk;xÞeðk; �Þ e†ðk; �Þ _Qðk;xÞ; (11)

where superscript “†” denotes complex conjugate and trans-

pose, e(k, �) and _Qðk;xÞ are two column vectors defined

eðk; �Þ ¼ ½eb1

1 ðk; �Þ; e
b1

2 ðk; �Þ;…; en
2ðk; �Þ; en

3ðk; �Þ�
T

(12)

_Qðk;xÞ ¼ ½ _qb1

1 ðk;xÞ; _qb1

2 ðk;xÞ;…; _qbn

2 ðk;xÞ; _qbn

3 ðk;xÞ�
T ;

(13)

where superscript “T” denotes transpose.

Substitute Eq. (11) into Eq. (8)

Uðk;xÞ ¼
X3n

�

_Q
†ðk;xÞeðk; �Þ e†ðk; �Þ _Qðk;xÞ

¼ _Q
†ðk;xÞ

X3n

�

eðk; �Þ e†ðk; �Þ
" #

_Qðk;xÞ

¼ _Q
†ðk;xÞ I _Qðk;xÞ ¼ _Q

†ðk;xÞ _Qðk;xÞ
¼ U0ðk;xÞ; (14)

where I is a 3n� 3n identity matrix. In Eq. (14), we use

the orthonormal condition
P3n

� eðk; �Þ e†ðk; �Þ ¼ I, which is

obvious when considering that the dynamic matrix D is

Hermitian: D¼D†. Analytically, we prove that the total SED

function does not depend on eigenvectors and that the second

version frequency-domain NMA (U0ðk;xÞ) gives the same

results with the first version (U(k, x)). This result indicates

that any arbitrary set of orthonormal vectors gives the same

results of total SED function with the true eigenvectors.

To verify our analytical conclusion, a number of MD sim-

ulations are set up for bulk argon, silicon, germanium, and

lead telluride. All the results show that U and U0 are exactly

the same for the phonon modes. In Fig. 4, we show an example

of the SED functions given by (a) an arbitrary set of orthonor-

mal vectors and (b) the true eigenvectors in PbTe at the

reduced wave vector of (0.875, 0, 0). The arbitrary set of ortho-

normal vectors gives different individual-branch SEDs with

the true eigenvectors, but they both produce the same total

SED. For a clear observation, we plot the relative difference

between the total SEDs given by (a) and (b) in Fig. 4(c). The

relative difference is within 10�3 throughout the frequency

range no matter near the peaks or far from the peaks, indicating

the difference is zero with the numerical accuracy in the com-

putation. Therefore, the eigenvectors are not absolutely neces-

sary in frequency-domain NMA. In the case that two modes

have very close frequencies so that their two SED peaks cannot

be distinguished in the total SED plot, applying eigenvector

can help to separate them into two individual plots.

IV. CONCLUSIONS

To summarize, the anharmonicity of eigenvector is found,

and the role of eigenvector in NMA is discussed. Anharmonic

frequency is caused by the change of force constant at finite

FIG. 4. The SED functions of bulk

PbTe calculated based on (a) an arbi-

trary set of orthonormal vectors and

(b) the true eigenvectors at the temper-

ature of 300 K and the reduced wave

vector of (0.875, 0, 0). Figure (c)

shows the relative difference between

the total SEDs given by (a) and (b).
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temperature, and thus exists in all anharmonic materials. We

find that the anharmonicity of phonon eigenvector does exist,

but in contrast to frequency, anharmonic eigenvector is caused

by the relative change of the different force constants with

neighbors of different species and thus only exists in com-

pound materials for which each atom has at least two types of

anharmonic interactions with other atoms. This is important to

the thermoelectric materials PbTe, PbSe, Bi2Te3, etc. As for

the role of eigenvector in the frequency-domain NMA, we

show that the eigenvectors are unnecessary using both analyti-

cal derivations and numerical simulations. This finding can

probably resolve the confusion regarding the role of phonon

eigenvectors in the frequency-domain NMA. The NMA with-

out phonon eigenvector makes the calculations more conven-

ient and reduces the computational cost. Since eigenvectors

are required in time-domain NMA, we expect that the anhar-

monic eigenvector can improve the computation accuracy in

time-domain NMA. The anharmonic eigenvector can find

potential use in other areas such as the wave-packet analysis

where phonon eigenvectors are required.
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