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Phonon energies at finite temperatures shift away from their harmonic values due to anharmonicity.
In this paper, we have realized the rigorous calculation of phonon energy shifts of silicon by three-
and four-phonon scattering from first principles. The anharmonic fourth-order force constants are
calculated by considering up to the fifth nearest neighbors. The results agree reasonably well with
available data from inelastic neutron scattering throughout the Brillouin zone. Surprisingly, the fre-
quency shifts of optical phonon modes near the Γ point are sensitive to the cutoff radius of the
fourth-order force constants, in contrast to the four-phonon scattering rates, which nearly saturate
when considering the second nearest neighbors. We have also compared the results with ab initio
molecular dynamics simulations and found that the higher order of anharmonicity is important for
optical phonons. Our work provides critical insight into the anharmonic phonon frequency shift and
will have a significant impact on the thermal and optical applications. Published by AIP Publishing.
https://doi.org/10.1063/1.5048799

I. INTRODUCTION

In general, phonon frequencies of solids at finite temper-
atures shift away from their harmonic values due to anharmo-
nicity.1 Accurate prediction of the frequency shift is crucial
for the study of the thermal, thermodynamical, and acoustic
properties as phonons carry most of the heat and are respon-
sible for most of the entropy in semiconductors and insula-
tors in general cases.2–4 Since the phonon frequency affects
the phonon interaction with other fundamental particles, the
study of frequency shift is also important in other areas such
as superconductivity,5–8 infrared spectroscopy,9,10 gravita-
tional wave detector,11 etc.

Anharmonicity softens phonon modes via anharmonic
three- and four-phonon scatterings. In the past few decades,
several works have performed the density functional theory
calculations of the frequency shift based on perturbation
theory and obtained reasonable results as compared to the
experimental Raman spectroscopy measurement.1,8,11–15 Their
calculations, however, were limited at the Γ point, which is
not responsible for the thermal properties such as the thermal
conductivity. Recently, Turney et al.16,17 conducted the calcu-
lations at other points in the Brillouin zone (BZ), however, it
was based on a classical interatomic potential. Another
method that can extract the frequency shift from ab initio
molecular dynamics is the spectral energy density analysis,18–21

which is, however, quite time-consuming. Moreover, these
MD-based methods cannot conveniently separate effects of
three- and four-phonon scatterings. The goal of this work is
to calculate the phonon frequency shift in the full Brillouin

zone based on perturbation theory using first principles.
Silicon is taken as the benchmark material since it has experi-
mental data available, which are very limited for other mate-
rials. Also, the thermal properties of silicon at finite
temperatures are of great importance in electronics,22,23 pho-
tovoltatics,24 and thermoelectrics.25,26

II. METHODOLOGY

The frequency shift due to phonon scattering is given by
the real part of the self-energy.1,8,12,14,16,17 In the first order,
the only contribution is the bubble diagram,1,14 which corre-
sponds to the four-phonon scattering term Δω(4)

λ in Eq. (1).
Here, λ is short for (q, ν) with q and ν representing phonon
wave vector and dispersion branch, respectively. In the
second order, the only contribution is the loop diagram,1,14

which is the three-phonon scattering term Δω(3)
λ in Eq. (2). In

some literature,12,16,17 a tadpole diagram was included, which
is the term of the three-phonon process to the second order
Δω(T)

λ . This term is generally negligible. For instance, Lazzeri
et al.14 pointed out that this term is zero in their system due
to the lattice translational invariance. The expressions of
Δω(3)

λ , Δω(4)
λ , and Δω(T)

λ are given by

Δω(4)
λ ¼ �h

8Nqωλ

X
λ1

V (4)
�λλλ1�λ1

� 2n1 þ 1
ω1

, (1)

Δω(3)
λ ¼ �h

16Nqωλ

X
λ1λ2

V (3)
λ�λ1�λ2

�� ��2δq�q1�q2 �
n1 þ n2 þ 1

ω1ω2(ωλ � ω1 � ω2)P

�
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Δω(T)
λ ¼ �h

8Nqωλ

X
λ1

X
ν2

V (3)
λ,�λ,(0,ν2)

V (3)
λ1,�λ1,(0,ν2)

� 2n1 þ 1
ω1ω2(ω2)P

, (3)

where V (3)
+ and V (4)

++ are the three-phonon and four-phonon
scattering matrices given by

V (3)
λλ1λ2

¼
X

b,l1b1,l2b2

X
αα1α2

Φαα1α2
0b,l1b1,l2b2

eλαbe
λ1
α1b1

eλ2α2b2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mbmb1mb2

p ψ3, (4)

V (4)
λλ1λ2λ3

¼
X

b,l1b1,l2b2,l3b3

X
αα1α2α3

Φαα1α2α3
0b,l1b1,l2b2,l3b3

eλαbe
λ1
α1b1

eλ2α2b2
eλ3α3b3ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

mbmb1mb2mb3
p ψ4:

(5)

It should be noted that, in phonon frequency shifts, the four-
phonon term makes the lowest-order (or main) contribution,
which is generally much larger than the three-phonon term.
This is different from phonon scattering rates, in which the
four-phonon term is in a higher order, which makes generally
much smaller contribution than the three-phonon term.27,28

In the equations above, n ¼ (e�hω=kBT � 1)�1 is the
phonon occupation number, ω is the phonon frequency, and
e is the phonon eigenvector. l, b, and α label the indices of
primitive cells, basis atoms, and the (x,y,z) directions, respec-
tively. rl is the position of the primitive cell l. The Cauchy
principle value 1=(x)P ¼ x=(x2 þ ϵ2), where the infinitesimal
ϵ is a broadening factor.

The phases ψ3 and ψ4 should keep consistent with the
phase used in the dynamical matrix D that solves eigenvectors.
Either of the following two sets of equations can be used:

ψ3 ¼ ei(q�r0bþq1�rl1b1þq2�rl2b2 ), (6a)

ψ4 ¼ ei(q�r0bþq1�rl1b1þq2�rl2b2þq3�rl3b3 ), (6b)

Dbb1
αα1

(q) ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffi
mbmb1

p
X
l1

Φαα1
0b,l1b1

eiq�(rl1b1�r0b); (6c)

ψ3 ¼ ei(q1�rl1þq2�rl2 ), (7a)

ψ4 ¼ ei(q1�rl1þq2�rl2þq3�rl3 ), (7b)

Dbb1
αα1

(q) ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffi
mbmb1

p
X
l1

Φαα1
0b,l1b1

eiq�rl1: (7c)

The first set of phases [Eq. (6)] uses the positions of atoms
rlb, while the second [Eq. (7)] uses the positions of cells rl.
We have verified numerically that the two sets of equations
give the same results. However, it should be noted that the
mixing of the two sets may give wrong results. For example,
if the eigenvectors are calculated by using the dynamical
matrix in Eq. (6c) (as implemented in Phonopy29), the
phases ψ3 and ψ4 calculated by rl [Eqs. (7a) and (7b)] will
give wrong three- and four-phonon scattering rates as well as
frequency shifts (see Fig. 5 in Appendix A.)

The second-, third-, and fourth-order force constants Φ
were obtained by first principles. In Eq. (1), although V (4) is

a complex number, we have verified that the summation
P

λ1
cancels out the imaginary part and give a real Δω(4)

λ .
It is noted that the above methods do not include the

effect of thermal expansion. As pointed out by Bonini et al.,8

the thermal expansion contribution should be taken into
account to obtain the total frequency shift:

Δωtot
λ ¼ Δω(4)

λ þ Δω(3)
λ þ Δω(T)

λ þ Δωquasi
λ : (8)

The second-order force constant and phonon frequencies
were calculated by Phonopy29 using density functional per-
turbation theory (DFPT) based on VASP.31 The supercell is
taken as 4� 4� 4 primitive cells. The third-order force
constants were calculated via Thirdorder, a package of
ShengBTE, based on VASP using 4� 4� 4 primitive cells
considering up to the sixth nearest neighbor. The fourth-
order force constant considering up to the second and
third nearest neighbors were calculated using 4� 4� 4 prim-
itive cells, while those considering up to the fourth and
fifth nearest neighbors were calculated using 5� 5� 5 prim-
itive cells. We used the Perdew-Burke-Ernzerhof (PBE)
parameterization of the generalized gradient approximation

FIG. 1. Phonon frequency shifts of Si at 100 K (a) and 1200 K (b) by four-
phonon (colored open dots) and three-phonon scattering (black solid dots).
The effect of fourth-order force constant cutoff radius is studied, as labeled
by the nearest neighbors (nn).
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(GGA) for exchange and correlation functionals32,33 with
the projector-augmented-wave method.34 The plane-wave
energy cutoff is 319 eV, and the electron k mesh is taken as
4�4�4. The energy convergence threshold is set at 10�7 eV.
The phonons are taken with a 16� 16� 16 q-mesh in the
BZ. The calculation of quasiharmonic frequency requires
the temperature-dependent lattice constant or the thermal
expansion coefficient, which can be calculated by the volume
derivative of phonon entropy. The details of the calculations
of thermal expansion coefficient and quasi-harmonic
frequency shift are shown in Appendix B.

III. RESULTS AND DISCUSSIONS

The phonon frequency shifts Δω(3)
λ and Δω(4)

λ as a func-
tion of frequency are shown in Fig. 1. Since the Δω(T) term
is found to be zero, it is not shown in the figure. It is seen
that the four-phonon scattering overwhelmingly dominates
the frequency shifts. As pointed out by Marududin and
Fein,1 the four-phonon scattering softens the acoustic
phonon modes. Interestingly, we find that the softening of
transverse acoustic (TA) mode is significantly larger than the
others, although the TA phonons have much longer relaxa-
tion time. It is probably because that the TA mode is the
softest as seen in Fig. 6 that the Grüneisen parameter of TA
mode is largest. At room temperature, the relative shifts of
the longitudinal acoustic (LA) and all the optical modes are
around 0.4%, while those for the TA mode are 0.5%–2.5%.

As the temperature increases to 1200 K, LA and optical
branches shift down by �2.8%, while the TA branch by
2%–6.5%. Based on this observation, we conclude that the
phonon scattering rate (imaginary part of self-energy) and
the frequency shift (real part of self-energy) are not neces-
sarily positively correlated.

Interestingly, we note that the phonon anharmonicity
does not always soften phonon modes. It is well known from
the anharmonic potential well that anharmonicity deviates the
spring constant from the harmonic parabolic potential well to
a softer mode. However, we find that at low temperature,
some optical phonon modes near the BZ boundary can be
stiffened by anharmonicity, which was not considered in
Ref. 1. To gain physical insight into this phenomenon, we
have looked into the four-phonon scattering phase space.
Some examples are shown in Fig. 2. The results are based on
Eq. (1). Each panel shows a phonon mode, and it contains
the frequency shifts induced by all the other modes. For
example, for the first TA mode at 3.4 THz shown in
Fig. 2(a), although some other modes bring its frequency up,
most other modes bring its frequency down. As a result, the
total four-phonon frequency shift of this TA mode is negative
(�0:09 THz at 100 K and �0:5 THz at 1200 K). Similar
trends are found in Figs. 2(b)–2(e). For the LO mode at
12 THz in Fig. 2(f ), the low-frequency phonons bring its
frequency down while high-frequency phonons bring its
frequency up. At low temperature, the overall four-
phonon frequency shift is positive (þ0:03 THz at 100 K).

FIG. 2. Four-phonon frequency shift phase spaces of six phonon modes examples. Each panel contains two temperatures, 100 K and 1200 K. The phonon
branch and frequency is labeled on the top of each panel. The total four-phonon shift of each mode is the summation of the shifts induced by all the other
phonon modes. Panels (a)–(e) show a negative overall shift at low and high temperatures. Panel (f ) shows a positive overall shift at low temperature and nega-
tive shift at high temperature.
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As temperature increases, the low-frequency phonons’ impact
increases faster than the high-frequency phonons’ impact. As
seen at 1200 K, the low-frequency phonons’ negative shifts
dominate over high-frequency phonons’ positive shifts, and
the overall shift becomes negative (�0:06 THz at 1200 K).
The temperature effect is reflected in the factor (2nþ 1)=ω
in Eq. (1). It is easy to find that the function
1
ω

2
exp (�hω=kBT)�1 þ 1

� �
increases with T , and low ω increases

faster than high ω with increasing T .

Furthermore, the effect of the cutoff radius of the fourth-
order force constants is studied. We find that increasing the
cutoff radius from the second to the third nearest neighbor
can substantially increase the frequency shift, especially for
the high frequency phonons. This phenomenon is quite dis-
tinct from the four-phonon scattering rates, which are not
sensitive to the fourth-order force constants cutoff radius,
especially for the high-frequency phonons.28

The phonon frequency shifts as a function of temperature
at four given BZ points are shown in Fig. 3. The four panels
correspond to the TA modes at the X, K, and
(0.75,0.25,0.25) points and the TO mode at Γ point in the
Brillouin zone, respectively. At low temperature, the effects
of thermal expansion and three-phonon scattering are negligi-
ble, and the total frequency shift comes from the four-phonon
scattering which is the first order perturbation. At a higher

temperature, the thermal expansion effect becomes important,
though not as important as the four-phonon scattering, while
the three-phonon effect remains negligible since it is a
higher-order term. Our results are compared to the existing
data from first principles simulations and inelastic neutron
scattering experiment.30 Due to the negative Grüneisen
parameter of the TA branch and the positive thermal expan-
sion of silicon at room to high temperatures, Δωquasi is posi-
tive while the others are negative. Our results show that the
anharmonic phonon shift increases linearly with temperature
at high temperature, which agrees well with the statement
predicted by Marududin and Fein.1 Our prediction agrees rea-
sonably well with the experimental data.

The perturbation theory has a limitation since it does
not include higher order anharmonicities, which may
account for the discrepancy between the prediction of the
experiment for the optical phonon at Γ point. To understand
this discrepancy, we have conducted a separate normal mode
analysis18–21 calculation based on ab initio molecular
dynamics (AIMD). To ensure the AIMD simulations cor-
rectly capture the thermal expansion contribution, the lattice
constants are adjusted at each temperature to ensure the pres-
sure of the micro canonical (NVE) ensemble is zero. The
time step in the simulation is set to 1.5 fs, which is short
enough to resolve all the phonon modes in Si. Before each
NVE simulation, canonical-ensemble (NVT) simulations

FIG. 3. The frequency shifts calculated from first principles compared to the experimental inelastic neutron scattering data. The modes for demonstration are
the lower-branch TA phonons at the high-symmetry q points: X (a) and K (b). Another point at 2π=a�(0.75,0.25,0.25) located away from high-symmetry lines
is shown as a reference in (c). The optical phonon at the Γ point is shown in (d). The frequency shift due to the thermal expansion (dash-dotted line), 4-phonon
scattering (dotted line), 3-phonon scattering (dashed line), and the total effects (solid red line) are calculated by this work. The experimental data (red dot) as
well as the temperature-dependent effective potential (TDEP) calculation results (solid blue line) given by Ref. 30 are shown for comparison. No TDEP data are
available for the Γ point.
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were conducted to equilibrate the system. The total NVE
simulation time at each temperature is run for 40 000 steps
with the first 5000 steps discarded as the initialization
steps and the remaining 35 000 steps taken as the MD tra-
jectory for the spectral energy density (SED) analysis.
The obtained SED for each phonon mode is a distinct
peak (see Fig. 8 in Appendix C), from which the anhar-
monic phonon frequency can be extracted.

Here, we use NVT instead of NPT before NVE simula-
tions. NPT followed by NVE is usually used in classical MD
simulations for normal mode analysis. But in AIMD, the
simulation domain is small and the MD fluctuation (�1= ffiffiffiffi

N
p

)
is large. In the pressure vs. time plot in NPT simulations, we
find that the pressure oscillates significantly around zero
although the average is zero. When we switch the NPT to
NVE at some time point, the pressure at that time point is
typically large non-zero because it is oscillating. As a result,
the following NVE simulation has an average large non-zero
pressure. (Normal mode analysis requires zero-pressure to
eliminate the pressure effect on the phonon properties.)
Therefore, we have to spend much more effort to use NVT
instead of NPT before NVE: we manually adjust the lattice
constants and run NVT for them, and then find out which
lattice constant gives zero-pressure for a given temperature.
Then, we use that lattice constant to run NVE. Only by this
way can we guarantee the pressure in the NVE simulation is
zero. Note that due to the large fluctuation, the lattice cons-
tant read out from NPT simulations has a large error bar, and
it is not accurate enough to give zero pressure in NVE simu-
lations. This is why the AIMD simulations for normal mode
analysis are time expensive.

In Fig. 4, the predictions with 3� 3� 3 and 4� 4� 4
simulation cells are compared to the Raman35,36 and
neutron30 experimental data. We find that the size effect of
AIMD simulations from 3� 3� 3 to 4� 4� 4 is strong,
probably because we used the Γ point only as the electronic
k-mesh in the AIMD simulations. For the 3� 3� 3 super-
cell, the Γ point only might not be able to predict interatomic

force accurately. The larger the domain size is, the better the
Γ-only k-mesh works in DFT. It can be seen that the size
effect from 4� 4� 4 to 5� 5� 5 is smaller. The AIMD
simulation results agree reasonably well with experiment
with a slight overestimation, which is suspected to be origi-
nated from the fast algorithm of AIMD simulations that
might sacrifice the accuracy of DFT electronic method. Since
AIMD simulations naturally include all the orders of anhar-
monicity, the underestimation of frequency shift by four-
phonon scattering might originate from the ignorance of
higher order scattering, which is beyond the scope of our
study.

Phonon softening can affect the thermal conductivity of
materials, which is important for thermoelectric applica-
tions. Thermoelectric materials such as SnSe,37 Bi2Te3,

38

and PbTe39 typically have significant phonon softening
effects at high temperatures due to their long-range
Coulomb interactions and resonant bonds. SnSe even has a
phase change at high temperature. Wang et al. have shown
that Bi2Te3 could have a large phonon frequency shift even
at room temperature by using classical MD simulations with
SED analysis.38 The phonon softening affects the thermal
conductivity by changing the phonon group velocity,
phonon-phonon scattering rates, and phonon specific heat.
Typically, the most straight-forward and significant impact
is on the group velocity. Recently, it was found that the
phonon-phonon scattering rates could also be substantially
affected in some system.39

IV. CONCLUSIONS

In summary, we have calculated the temperature-
dependent phonon frequencies of silicon in the full Brillouin
zone by first-principles perturbation theory. The frequency
shifts as compared to 0 K include the effects of anharmonic
phonon scattering and thermal expansion, with the former
found to be dominating. The total frequency shifts increase
linearly with temperature at high temperature. At 1200 K, the
TA branch shifts down by 2%–6.5%, and the other branches
shift down by about 2.8%. Our results are found to agree
well with the existing inelastic neutron scattering data. The
calculation of the fourth order force constant as well as the
frequency shifts are not expensive, and we expect our
method and results will inspire the calculations of other mate-
rials such as the thermoelectric materials in which the
phonon softening effect is strong.
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APPENDIX A: PHASE ISSUE IN DETERMINING THE
FOUR-PHONON FREQUENCY SHIFT

Figure 5 shows the four-phonon frequency shifts calcu-
lated by using consistent and inconsistent phases.

FIG. 4. The phonon frequency shift of the optical phonon at the Γ point as a
function of temperature. The normal mode analysis predictions based on
AIMD with are compared to the Raman35,36 and neutron30 experimental
data.
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APPENDIX B: THERMAL EXPANSION CONTRIBUTION
TO PHONON SHIFTS

The calculation of quasiharmonic frequency requires the
temperature-dependent lattice constant or the thermal expan-
sion coefficient, which can be calculated by the volume
derivative of phonon entropy. With the detailed derivation
process explained in Ref. 40, here we only show the neat pro-
cedure. Starting from DFT, the harmonic phonon frequencies
ω0
λ and the pressures at different lattice constants around a0

are calculated. a0 is the lattice constant at 0 K. From the
phonon frequency response to the volume change, the mode-
dependent Grüneisen parameter γλ is defined as

γλ ¼ � V

ω0
λ

@ω0
λ

@V
: (B1)

Grüneisen parameter is calculated by using the finite differ-
ence of the phonon frequencies at several different volumes.
From the pressure response to the volume change, the bulk
modulus B can be calculated as

B ¼ �V
dP

dV
: (B2)

The obtained γλ and B are then used as the inputs of the cal-
culation of the temperature-dependent thermal expansion
coefficient

αV (T) ¼ � kB
NkVcellB

X
λ

γλ �
x

2

� �2
� 1� coth2

x

2

� �h i
(B3)

and the temperature dependent volume

V(T) ¼ V(0) � exp
ðT
0
αV (T)dT

� 	
: (B4)

Here, Nq is the number of q points. Vcell is the volume of a
primitive cell, which is a3=4 for silicon. kB is the Boltzmann
constant. x is short for �hω=kBT . Finally, the obtained αV and
γλ are used as the input to calculate the temperature-

dependent quasiharmonic frequency

ωquasi
λ (T) ¼ ω0

λ �
V(T)
V(0)

� 	�γλ

¼ ω0
λ � exp

ðT
0
αV (T)dT

� 	� ��γλ

: (B5)

Some literature used a different approach, by minimizing the
Helmholtz free energies at given temperatures,8,41,42 to calcu-
late the temperature-dependent lattice constant. The two
approaches, in principle, give the same results.

The harmonic frequencies of a 16� 16� 16 q-mesh are
obtained as a function of lattice constant, with the dispersion
along high-symmetry directions shown in Fig 6(a). It is seen
that the longitudinal acoustic (LA) and all the optical phonon
modes are softened as the lattice constant increases. Their
Grüneisen parameters are thus positive, as shown in Fig 6(b).
In contrast, most phonons of the transverse acoustic (TA)
branch are stiffened as the lattice constant increases, and thus
their Grüneisen parameters are negative. This phenomenon
has been discussed extensively in the literature.40,47–50 The
bulk modulus B of Si calculated in this work is 97.61 GPa,
which matches well with the experimental value 97.8 GPa.51

Based on the Grüneisen parameters and the bulk modulus, we
obtained the linear thermal expansion coefficient αL as a func-
tion of temperature as shown in Fig. 7(a). For isotropic materi-
als, αL ¼ αV=3. Resulting from the negative Grüneisen
parameter of the TA mode, silicon exhibits negative thermal
expansion coefficient at low temperature. As the temperature
increases, more LA and optical phonons are excited, and the
overall thermal expansion coefficient turns to positive. The tran-
sition temperature is predicted at about 128K, which agrees
well with the experimental value at around 125K.43–46 As the
temperature increases far beyond the Debye temperature, all the
modes tend to be excited, and αV tends to saturate. As compared
to the first principles prediction in the literature,30,40 our result
agrees much better with experiment.43–46 In Figs. 7(b) and 7(c),
the relative lattice constant change is plotted as a function
of temperature. The lattice constant we obtained at 0 K is
5.4037 Å. At 128 K, the lattice constant shrinks the most,
by 0.004%, which is a subtle change. At room temperature

FIG. 6. Si phonon dispersion relations at different lattice constants and the
mode-resolved Grüneisen parameter calculated from first principles.

FIG. 5. Phonon frequency shifts at 1200 K calculated from correct and
wrong phases.
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and 1200 K, the lattice constant is expanded by 0.021%
and 0.341%, respectively. These results agree well with
the experiment.52,53

APPENDIX C: EXAMPLE OF SPECTRAL ENERGY
DENSITY FROM AIMD

Figure 8 shows the distinct SED peaks obtained from
AIMD simulations.
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